从地球上发射一枚火箭绕过太阳,再返回到地球上来,请列出方程,并求出解

嗯,今天老师布置了一个挺有意思的问题,就是从地球发射一枚火箭,绕过太阳再返回地球。需要列出方程并求解。这个问题看起来像是轨道力学的问题,涉及到天体运动和火箭的轨道设计。不过我现在还不太确定具体该怎么下手,所以得先理清楚思路。

首先,我得回忆一下天体力学的基本知识。地球绕太阳的公转轨道可以近似为圆形,轨道半径大约是1个天文单位(AU),也就是约1.496×10^8公里。地球的公转速度大约是29.78 km/s。而火箭从地球发射,需要考虑脱离地球引力后的日心轨道。不过题目里可能假设火箭已经脱离地球引力,主要考虑在太阳引力作用下的运动,或者是否需要同时考虑地球和太阳的引力?不过通常在这种问题中,可能假设火箭已经脱离地球引力,主要考虑太阳的引力,因为地球的引力范围相对太阳来说很小,所以火箭的轨道主要受太阳引力的支配。

接下来,火箭要绕过太阳,再返回地球。这里的“绕过太阳”应该是指火箭的轨道会到达太阳的另一侧,但并不是撞击太阳,而是绕太阳一周或半周后返回地球。不过可能需要更精确的分析,比如是否是一个椭圆轨道,其近日点在太阳附近,然后返回地球。或者,可能是一个转移轨道,比如霍曼转移轨道,但目标是从地球出发,绕太阳后再返回地球。

不过问题是要返回地球,所以需要考虑地球和火箭的轨道周期是否匹配,使得当火箭完成一定的轨道周期后,地球也回到相遇的位置。例如,如果火箭的轨道是一个椭圆,其半长轴使得轨道周期是地球公转周期的整数分之一或倍数,那么当火箭完成若干圈后,地球也刚好回到出发点,这样火箭就能返回地球。

不过更可能的是,这个题目可能需要设计一个椭圆轨道,其近日点或远日点与地球轨道相交,使得火箭在绕太阳一周后,再次与地球相遇。不过地球本身也在运动,所以需要考虑轨道周期的时间是否刚好等于地球公转的时间,或者某个比例,这样才能相遇。

或者,可能是类似彗星的椭圆轨道,其远日点在地球轨道附近,而近日点在太阳附近,这样当火箭从地球出发,到达近日点后再返回到远日点时,地球刚好到达那里,从而相遇。这时候需要计算这样的椭圆轨道的参数,比如半长轴、离心率等,使得轨道周期与地球公转周期成一定比例,比如1/2,这样火箭绕太阳两次的时间等于地球公转一次的时间,或者类似的情况。

不过可能更简单的情况是,火箭的轨道是一个椭圆,其轨道周期等于地球的公转周期,这样当火箭绕太阳一圈后,地球也刚好绕太阳一圈,两者再次相遇。不过这样的话,半长轴需要和地球轨道相同,也就是圆轨道,但这样的话火箭需要和地球速度相同,但火箭是从地球发射的,所以可能需要不同的速度,导致椭圆轨道,但半长轴相同,周期相同,这样的话地球和火箭在相同周期后相遇,但可能轨道不同,导致相遇点可能不同。

不过这可能不太对,因为如果半长轴相同,轨道周期相同,但地球在圆轨道,火箭在椭圆轨道,那么它们的角速度不同,除非火箭的椭圆轨道的周期确实等于地球的公转周期,那么经过一个周期后,两者都会回到出发点,但火箭的轨道可能和地球轨道相交于出发点和另一个点,比如近日点或远日点。

不过这里可能需要更详细的分析。让我先列出开普勒第三定律,轨道周期的平方与半长轴的三次方成正比,即T² ∝ a³,其中T是周期,a是半长轴。太阳的引力常数μ = GM_sun ≈ 132712440000 km³/s²。

假设地球轨道为圆轨道,半径r_E = 1 AU ≈ 1.496×10^8 km。地球的公转周期T_E = 1年 ≈ 31557600秒。那么根据开普勒第三定律,对于任何绕太阳的轨道,有T² = (4π²/μ) a³。所以如果火箭的轨道半长轴a,那么它的周期T_r = sqrt((4π²/μ) a³)。要让火箭绕太阳一圈后返回地球,需要T_r = T_E * k,其中k是一个分数,使得当火箭完成k圈时,地球完成整数圈,从而相遇。不过最简单的可能是k=1,即T_r = T_E,这样火箭绕太阳一圈的时间等于地球公转一圈的时间,这样两者同时回到出发点,但这样的话火箭的轨道半长轴必须等于地球轨道的半径,即a = r_E,也就是圆轨道,但这样的话火箭需要具有和地球相同的速度,即29.78 km/s,但火箭是从地球发射的,所以如果它以地球的公转速度出发,那么它就会保持在地球的轨道上,和地球一起运动,不会绕过太阳。所以这可能不是题目要的答案。

另一种可能是,火箭发射后进入一个椭圆轨道,其远日点或近日点位于地球轨道上,而另一个焦点在太阳,这样当火箭完成半个椭圆轨道(比如从地球出发,到近日点,再返回地球),所需的时间刚好是地球公转半圈的时间,这样当火箭返回地球轨道时,地球也刚好到达那里。不过这需要计算椭圆轨道的半长轴和周期,使得时间匹配。

例如,如果火箭的轨道是一个椭圆,其远日点在地球轨道,近日点在太阳附近,那么半长轴a = (r_E + r_p)/2,其中r_p是近日点距离。然后轨道周期T_r = 2π sqrt(a³/μ)。要让火箭从地球出发,到达近日点再返回地球的时间是半周期,即T_r/2。要让这个时间等于地球公转半圈的时间,即T_E/2。因此需要T_r/2 = T_E/2 → T_r = T_E → a³ = (T_E² μ)/(4π²),而地球轨道的a_E = r_E,所以a = r_E,这又回到之前的结论,即火箭必须处于地球轨道,周期相同,但这不符合绕过太阳的条件。

所以可能需要另一个方法。例如,火箭的轨道是一个椭圆,其周期是T_r = (n/m) T_E,其中n和m是整数,这样经过m圈后,火箭的时间是n T_E,地球完成了n圈,这样两者相遇。但可能需要更具体的分析。

或者,考虑利用引力助推或者借助行星的引力,但题目可能没有提到这些,所以可能不需要。

回到原问题,火箭从地球出发,绕过太阳,再返回地球。这可能需要一个椭圆轨道,其近日点小于地球轨道半径,远日点等于地球轨道半径,这样当火箭到达近日点后,再返回到远日点时,地球刚好在那里。这种情况下,椭圆轨道的半长轴a = (r_E + r_p)/2,其中r_p是近日点距离。轨道周期T_r = 2π sqrt(a³/μ)。当火箭从地球出发,到达近日点再返回地球的时间是半个周期,即T_r/2。而在这段时间内,地球在圆轨道上移动的角度为ω_E * T_r/2,其中ω_E = 2π/T_E。为了让地球在火箭返回远日点时到达相遇点,地球需要移动的角度等于火箭轨道对应的角度变化。例如,如果火箭的轨道是对称的,那么从发射到返回地球,地球需要转过2π的整数倍加上火箭轨道对应的角度差。不过这个可能比较复杂。

或者,可以考虑霍曼转移轨道,但霍曼转移通常是从一个圆轨道到另一个圆轨道,比如地球到火星,但这里的情况不同,因为目标还是返回地球。不过或许类似的方法适用。例如,火箭从地球轨道出发,进入一个椭圆轨道,其远日点或近日点调整,使得在特定时间后返回地球。

或者,另一个思路是利用二体问题的解,即火箭在太阳引力场中的运动遵循开普勒方程。火箭的轨道是一个圆锥曲线,由初始的位置和速度决定。假设地球在发射时的位置作为初始点,火箭的速度相对于太阳的初速度为地球的公转速度(29.78 km/s)加上火箭的发射速度(相对于地球)。但题目可能假设火箭已经脱离地球引力,所以需要考虑相对于太阳的初始速度。

不过可能需要明确初始条件:火箭从地球发射,脱离地球引力后,相对于太阳的速度是多少?地球绕太阳的速度是v_E = 29.78 km/s。如果火箭脱离地球引力后,相对于地球的速度为v,那么相对于太阳的速度就是v_E + v(方向相同或相反,取决于发射方向)。例如,如果火箭沿地球公转方向加速,那么相对于太阳的速度是v_E + v;如果相反,则是v_E - v。

为了绕过太阳,火箭的轨道必须是一个围绕太阳的椭圆,且近日点距离小于地球轨道半径。或者,如果火箭减速,使其轨道成为进入内太阳系的椭圆,近日点在太阳附近,远日点在地球轨道附近,这样绕太阳一周后返回地球轨道,而此时地球可能已经移动到那里。

不过需要计算这样的轨道的周期,使得当火箭返回远日点(即地球轨道)时,地球刚好到达该点。因此,火箭的轨道周期需要与地球的公转周期有一个比例,使得时间同步。

假设火箭的轨道是一个椭圆,远日点r_a = r_E(地球轨道半径),近日点r_p < r_E。半长轴a = (r_a + r_p)/2。轨道周期T_r = 2π sqrt(a³/μ)。火箭从地球出发(远日点)到近日点再返回远日点所需的时间是T_r。要让这个时间等于地球公转的时间乘以某个整数比例,比如1:1,即T_r = T_E,这样当火箭完成一圈,地球也完成一圈,回到原位,但此时火箭在远日点,即地球轨道,所以相遇。但这样的话,a必须等于地球轨道的半长轴,即a = r_E,因此r_p = 2a - r_a = 2r_E - r_E = r_E,这又导致圆轨道,矛盾,因为r_p应该更小。所以这种情况下不可能。

那可能需要T_r = T_E * (k + 1)/k,其中k是整数,这样经过k次轨道周期后,地球和火箭相遇。或者考虑更简单的比例,比如T_r = (1/2) T_E,这样火箭绕太阳两次的时间等于地球绕太阳一次的时间,这样当火箭第二次回到远日点时,地球刚好到达那里。

例如,假设T_r = T_E / 2,那么根据开普勒第三定律:

T_r² = (4π²/μ) a³ → a³ = (T_r² μ)/(4π²) = ( (T_E/2)² μ )/(4π² )

而地球轨道的a_E = r_E,所以T_E² = (4π²/μ) r_E³ → μ = (4π² r_E³)/T_E²

代入a³的表达式:

a³ = ( (T_E² /4) * (4π² r_E³)/T_E² ) / (4π²) ) = ( (π² r_E³) ) / (4π²) ) = r_E³ /4 → a = r_E / (4)^(1/3) ≈ r_E / 1.5874 ≈ 0.63 r_E

这样半长轴a ≈ 0.63 AU,远日点r_a = 2a - r_p,但这里远日点应该是地球轨道半径r_E,所以:

对于椭圆轨道,远日点r_a = a(1 + e),近日点r_p = a(1 - e),其中e是离心率。而因为r_a = r_E,所以:

r_E = a(1 + e) → e = (r_E/a) -1 = (r_E / (r_E/ (4)^(1/3)) ) -1 = (4)^(1/3) -1 ≈ 1.5874 -1 = 0.5874

然后近日点r_p = a(1 - e) = (r_E /4^(1/3)) * (1 - 0.5874) ≈ (0.63 r_E) * 0.4126 ≈ 0.26 r_E,即约0.26 AU,这在太阳附近,所以火箭确实会绕过太阳。

那么这样的轨道周期是T_r = T_E /2,所以当火箭绕太阳两次的时间等于地球绕太阳一次的时间,因此当火箭第二次回到远日点时,地球刚好到达那里,完成相遇。因此,这样的轨道设计可以让火箭在两次绕日飞行后与地球相遇。

不过题目要求的是“绕过太阳再返回到地球上来”,可能只需要一次绕日,即半个轨道周期?或者一个完整的轨道周期?

如果是半个周期,即火箭从地球出发,沿椭圆轨道到达近日点,然后返回到地球轨道,此时地球是否已经移动到了相遇点?这需要计算半个轨道周期的时间,即T_r/2,是否等于地球转过半圈的时间,即T_E/2,这样地球在相遇点。但这样的话,同样需要T_r = T_E,导致半长轴等于r_E,矛盾。

所以可能需要更仔细的分析。

另一个方法是利用轨道力学中的能量和角动量守恒。火箭的轨道由其比机械能(ε)和角动量(h)决定。比机械能 ε = v²/2 - μ/r,其中v是速度,r是距离太阳的距离。对于椭圆轨道,ε = -μ/(2a)。角动量h = r × v,在平面问题中,可以简化为h = r*v_t,其中v_t是横向速度分量。

假设火箭从地球轨道r = r_E处发射,速度v由地球的公转速度v_E加上火箭的逃逸速度(相对于地球)。但可能需要更精确的处理。

例如,火箭在地球轨道上,相对于太阳的初始速度是v_E + Δv,其中Δv是火箭相对于地球的速度。假设火箭沿地球公转方向加速,那么v_initial = v_E + Δv,这样会进入一个更大的轨道;如果减速,v_initial = v_E - Δv,进入一个更小的椭圆轨道,近日点在太阳附近。

如果目标是让火箭绕过太阳然后返回地球,可能需要减速,使轨道成为椭圆,近日点靠近太阳,远日点在地球轨道。然后计算这个轨道的周期,使得当火箭返回远日点时,地球刚好在那里。

假设火箭在发射时(t=0)位于地球轨道r_E,速度v_initial = v_E - Δv(减速),从而进入一个椭圆轨道,远日点为r_E,近日点为r_p。椭圆轨道的半长轴a = (r_E + r_p)/2。轨道周期T_r = 2π sqrt(a³/μ)。火箭从远日点出发,经过半个周期T_r/2到达近日点,再经过另外半个周期返回远日点,总时间T_r。为了让火箭返回远日点时地球也到达那里,需要T_r = n*T_E,其中n是整数,通常取n=1,即轨道周期等于地球的公转周期。但这样的话,a³ = (T_E² μ)/(4π²) = r_E³ → a = r_E,所以椭圆退化为圆轨道,这不符合条件,因此需要n为其他值。

例如,如果n= (k+1)/k,这样经过k个轨道周期后,地球完成k+1个周期,相遇。但具体数值可能需要更详细的计算。

另一种可能是,火箭的轨道周期是T_r = T_E * (m/(m+1)),这样经过m+1圈后,地球完成m圈,相遇。例如,m=1,T_r = T_E/2,这样当火箭绕两圈用时T_E,地球绕一圈,相遇。但之前计算显示这样的半长轴是0.63 AU,远日点r_E,近日点0.26 AU,符合绕过太阳的条件。

因此,这样的轨道可以让火箭在两次绕日后与地球相遇。但题目是否要求一次绕日?可能需要明确。

如果允许两次绕日,那么这样的轨道是可行的。但题目可能希望火箭绕太阳一次后返回地球,这时候需要轨道周期T_r = T_E * (k/(k+1)),例如k=1,T_r = T_E/2,但这样需要两次绕日才能相遇,如前面所述。

或者,可能需要一个轨道,其远日点在地球轨道,近日点靠近太阳,周期T_r,使得当火箭到达远日点时,地球已经转过一定的角度,刚好到达那里。例如,火箭从地球出发,经过时间t到达远日点,此时地球在轨道上移动了θ_E = ω_E * t,而火箭在椭圆轨道上运行了半个周期,t = T_r/2。为了让地球在火箭到达远日点时到达同一位置,需要θ_E = ω_E * T_r/2 = 2π * (T_r/2)/T_E = π*(T_r/T_E) mod 2π。而火箭到达远日点的时间是T_r/2,此时需要地球转过的角度θ_E = π*(T_r/T_E) ≡ 2π*n (mod 2π),即T_r/T_E = 2n,其中n为整数。这不可能,因为T_r < T_E(因为椭圆轨道的半长轴小于地球轨道,所以周期更短),所以n=0.5,但n必须为整数。因此,这似乎不可能,说明单次绕日无法相遇,必须多次绕日。

因此,可能正确的答案是,火箭需要进入一个椭圆轨道,其周期与地球公转周期成整数比例,例如T_r = T_E/2,这样经过两次绕日,火箭用时T_E,地球也完成一圈,相遇在出发点。

接下来需要确定这样的轨道的参数,包括发射速度。

根据之前的计算,当T_r = T_E/2时,半长轴a = (r_E³/4)^(1/3) = r_E / 4^(1/3) ≈ 0.63 AU

椭圆轨道的远日点r_a = r_E(因为火箭从这里出发),近日点r_p = 2a - r_a = 2*(r_E/4^(1/3)) - r_E ≈ 2*0.63 r_E - r_E ≈ 1.26 r_E - r_E = 0.26 r_E,即0.26 AU,确实靠近太阳。

接下来计算发射时需要的速度。在远日点(r = r_E),火箭的速度v_r可以由椭圆轨道的速度公式:

v = sqrt(μ*(2/r - 1/a))

代入r = r_E,a = r_E/4^(1/3):

v_r = sqrt(μ*(2/r_E - 1/a)) = sqrt(μ*(2/r_E - 4^(1/3)/r_E)) = sqrt(μ/r_E * (2 - 4^(1/3)))

计算4^(1/3) ≈ 1.5874,所以:

v_r = sqrt(μ/r_E * (2 - 1.5874)) = sqrt(μ/r_E * 0.4126)

而地球的公转速度v_E = sqrt(μ/r_E),所以:

v_r = v_E * sqrt(0.4126) ≈ 29.78 km/s * 0.642 ≈ 19.12 km/s

但这是相对于太阳的速度。而火箭是从地球发射的,所以需要计算相对于地球的发射速度。地球的公转速度是29.78 km/s,所以火箭相对于地球的速度Δv = v_E - v_r ≈ 29.78 - 19.12 ≈ 10.66 km/s,方向与地球公转方向相反,即减速,以进入内椭圆轨道。

但这样的速度增量是否合理?因为地球的逃逸速度约为11.2 km/s,但这里需要的Δv是10.66 km/s,这已经接近地球的逃逸速度,但实际上可能需要考虑火箭已经脱离地球引力,所以这里的Δv是相对于太阳的速度变化,但实际发射时需要考虑脱离地球引力后的剩余速度。

不过这可能比较复杂,题目可能假设火箭已经脱离地球引力,直接考虑在太阳引力场中的运动,因此初始速度是相对于太阳的v_initial = v_r = 19.12 km/s,方向与地球公转相反,这样就能进入所需的椭圆轨道,周期为T_E/2,两次绕日后与地球相遇。

但需要验证这个计算是否正确。

另外,可能还有其他方法,比如利用双切轨道,即从地球出发,到达太阳附近,再返回地球,这可能涉及到两次引力助推,但题目中没提到,所以可能不需要。

总结一下,步骤可能包括:

1. 确定所需轨道周期,使得火箭返回地球轨道时地球刚好到达相遇点。

2. 计算对应的椭圆轨道的半长轴。

3. 计算发射速度相对于太阳的速度,进而得到相对于地球的速度。

4. 列出必要的方程,如开普勒第三定律,轨道速度公式等。

可能涉及的方程:

- 开普勒第三定律:T² = (4π²/μ) a³

- 椭圆轨道的远日点和近日点与半长轴和离心率的关系:r_a = a(1 + e), r_p = a(1 - e)

- 轨道速度公式:v = sqrt(μ(2/r - 1/a))

可能还需要能量方程:ε = v²/2 - μ/r = -μ/(2a)

现在需要将这个过程整理成数学方程,并解出所需的发射速度等参数。

例如,假设火箭的轨道周期为T_r,需要满足T_r = T_E/2,从而半长轴a = (T_r² μ/(4π²))^(1/3)

然后计算在远日点(地球轨道)的速度v_r = sqrt(μ(2/r_E - 1/a))

然后得到相对于地球的速度Δv = v_E - v_r(方向相反)

最后得到Δv的具体数值。

不过可能还需要验证这个轨道是否真的能让火箭在两次绕日后与地球相遇,此时地球已经绕太阳一圈,而火箭绕两圈,时间都是T_E。

因此,答案可能包括:

- 轨道半长轴a = r_E/4^(1/3)

- 发射速度相对于太阳为v_r ≈ 19.12 km/s,相对于地球的速度Δv ≈ 10.66 km/s 逆着公转方向

- 轨道周期T_r = T_E/2

但可能需要更准确的数学推导。

不过可能在计算中,我犯了一个错误,即在计算半长轴时,当T_r = T_E/2,根据开普勒定律:

T_r² = (4π²/μ) a³ → a³ = (μ T_r²)/(4π²)

而地球的轨道有T_E² = (4π²/μ) r_E³ → μ = (4π² r_E³)/T_E²

代入a³:

a³ = [(4π² r_E³)/T_E² * (T_E/2)² ] / (4π²) ) = (4π² r_E³ * T_E² /4) / (4π² T_E²) ) = (r_E³)/4 → a = (r_E³/4)^(1/3) = r_E/4^(1/3) ≈ 0.63 r_E,正确。

然后远日点r_a = a(1 + e) → r_E = a(1 + e) → e = (r_E/a) -1 = 4^(1/3) -1 ≈ 0.5874

近日点r_p = a(1 - e) ≈ 0.63 r_E * (1 -0.5874) ≈0.63*0.4126 r_E≈0.26 r_E

速度在远日点v_r = sqrt(μ(2/r_E -1/a)) = sqrt( (μ/r_E)(2 - r_E/a) )

因为μ = (4π² r_E³)/T_E²,所以μ/r_E = (4π² r_E²)/T_E² → v_r = sqrt( (4π² r_E²/T_E²)(2 - r_E/a) )

而r_E/a = 4^(1/3) ≈1.5874,所以2 - r_E/a ≈0.4126

因此,v_r = sqrt( (4π² r_E²/T_E²)*0.4126 )

但地球速度v_E = 2πr_E/T_E,所以v_E² = (4π² r_E²)/T_E² → v_r = sqrt( v_E² *0.4126 ) = v_E * sqrt(0.4126) ≈29.78*0.642≈19.12 km/s,正确。

因此,相对于地球的速度Δv = v_E - v_r ≈10.66 km/s,方向与地球运动方向相反。

所以,结论是,火箭需要以大约10.66 km/s的速度相对于地球逆公转方向发射,进入一个半长轴约为0.63 AU的椭圆轨道,周期为0.5年,绕太阳两次后,经过1年,与地球相遇。

不过题目是否只需要一次绕过太阳就返回呢?如果这样的话,可能需要不同的方法,比如自由返回轨道,但通常自由返回轨道用于绕月任务,利用月球引力返回,但对于太阳可能需要不同的策略。

另一种可能是,火箭发射后进入一个椭圆轨道,其轨道周期使得当火箭到达远日点时,地球已经转过足够的角度到达相遇点。例如,假设火箭的轨道周期为T_r,那么当火箭运行一周后,地球已经移动了T_r/T_E * 360度,需要这个角度差为360度的整数倍,即T_r/T_E = n/(n+1),使得经过时间T_r,地球转过n/(n+1)*360度,而火箭转过360度,这样相遇时地球刚好在初始位置。但可能需要具体数值解。

例如,设n=1,则T_r = T_E/2,这样当火箭绕一圈用时T_E/2,地球转过180度,之后火箭绕第二圈,用时T_E/2,总时间T_E,地球转过360度,相遇。这又回到之前的解。

因此,可能正确答案是需要火箭进入一个周期为0.5年的椭圆轨道,发射速度相对于地球约为10.66 km/s逆公转方向,这样两次绕日后返回地球。

不过题目可能期望更简化的模型,比如忽略地球引力,仅考虑太阳引力,直接给出轨道方程和必要的速度。

总结方程:

1. 开普勒第三定律:T² = (4π²/μ) a³

2. 轨道速度公式:v = sqrt(μ(2/r - 1/a))

3. 椭圆轨道的远日点和近日点:r_a = a(1 + e), r_p = a(1 - e)

4. 能量方程:ε = v²/2 - μ/r = -μ/(2a)

解:

设火箭轨道周期T_r = T_E/2,则a³ = (μ (T_E/2)²)/(4π²) = (μ T_E²)/(16π²)

又地球轨道有T_E² = (4π²/μ) r_E³ → μ = 4π² r_E³ / T_E²

代入得a³ = (4π² r_E³ / T_E² * T_E² /16π² ) = r_E³/4 → a = r_E / 4^(1/3)

远日点r_a = r_E = a(1 + e) → e = (r_E/a) -1 = 4^(1/3) -1 ≈0.5874

发射时在远日点速度v_r = sqrt(μ(2/r_E -1/a)) = sqrt( (4π² r_E³/T_E²)(2/r_E -4^(1/3)/r_E) ) = sqrt(4π² r_E²/T_E² (2 -4^(1/3))/r_E )

简化得v_r = (2π r_E/T_E) sqrt( (2 -4^(1/3)) )

因为2πr_E/T_E = v_E =29.78 km/s,所以:

v_r = v_E sqrt(2 -4^(1/3)) ≈29.78 * sqrt(2 -1.5874) ≈29.78 * sqrt(0.4126) ≈29.78*0.642≈19.12 km/s

Δv = v_E - v_r ≈10.66 km/s逆方向。

因此,方程列出并解出所需速度为约10.66 km/s相对于地球逆公转方向,进入椭圆轨道,半长轴≈0.63 AU,周期0.5年,两次绕日后返回地球。


从地球发射一枚火箭绕过太阳再返回地球,需设计一个椭圆轨道,使其轨道周期与地球公转周期匹配,确保相遇。以下是关键步骤和方程:

1. 轨道周期与半长轴的关系(开普勒第三定律)

火箭的轨道周期  需满足 ​​,即地球公转周期的一半。根据开普勒第三定律:

T_r^2 = \frac{4\pi^2}{\mu} a^3

其中 ≈3.15576×107s,地球轨道半径 。代入 ,解得半长轴:

a = \left( \frac{\mu (T_E/2)^2}{4\pi^2} \right)^{1/3} = \frac{r_E}{4^{1/3}} \approx 0.63 \, r_E

2. 椭圆轨道参数

远日点 ​,近日点 ​。离心率 e满足:

\mu = GM_{\odot} \approx 1.327 \times 10^{11} \, \text{km}^3/\text{s}^2, \quad T_E \approx 3.15576 \times 10^7 \, \text{s}, \quad r_E \approx 1.496 \times 10^8 \, \text{km}

3. 发射速度计算

在远日点(地球轨道处),火箭速度由轨道速度公式:

代入 ,计算得:

地球公转速度 ,因此火箭需相对于地球的速度增量为:

4. 返回时间

火箭轨道周期  年年,绕太阳两次耗时 年,此时地球完成一圈,两者相遇。

结论

火箭需以 10.66 km/s 的速度逆地球公转方向发射,进入半长轴约 0.63 AU 的椭圆轨道,周期 0.5 年,两次绕日后返回地球。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宝哥Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值