CUDA Toolkit 下载与安装完整指南
1. 准备工作
1.1 检查系统兼容性
检查显卡是否支持CUDA:
- 右键点击桌面 → NVIDIA 控制面板
- 点击"系统信息" → “组件”
- 查看"3D设置"中的"NVCUDA.DLL"产品名称
- 或使用命令行:
nvidia-smi
支持的GPU架构:
- NVIDIA Tesla (所有型号)
- NVIDIA Quadro (所有型号)
- GeForce GTX 650 及以上
- GeForce RTX 系列 (推荐)
- 其他专业计算卡
1.2 检查系统要求
Windows 系统要求:
- Windows 10 或 Windows 11 (64位)
- 至少 4GB 可用磁盘空间
- Visual Studio (推荐 2019 或 2022)
- 最新的 Windows 更新
Linux 系统要求:
- Ubuntu 18.04/20.04/22.04
- CentOS 7/8
- 其他主流 Linux 发行版
- GCC 编译器
2. 下载 CUDA Toolkit
2.1 访问官方下载页面
-
访问 NVIDIA CUDA 下载页面:
https://developer.nvidia.com/cuda-downloads -
选择你的操作系统和配置:
2.2 选择合适的版本
版本选择建议:
- 最新稳定版:适合新项目
- LTS 版本:适合生产环境
- 与框架兼容的版本:如 PyTorch、TensorFlow 推荐的版本
查看 PyTorch/TensorFlow 兼容性:
# PyTorch 兼容性
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# TensorFlow 兼容性
pip install tensorflow[and-cuda]
3. Windows 安装步骤
3.1 下载安装包
选择以下任一方式:
在线安装包 (推荐):
- 文件较小,安装时下载所需组件
- 文件名类似:
cuda_12.1.0_531.14_win10.exe
离线安装包:
- 文件较大,包含所有组件
- 文件名类似:
cuda_12.1.0_531.14_windows.exe
3.2 安装步骤
-
关闭所有应用程序
- 关闭浏览器、VS Code、Python 等
- 特别是杀毒软件
-
运行安装程序
- 右键 → “以管理员身份运行”
- 选择临时解压目录
-
安装选项
☑️ CUDA ☑️ Development ☑️ Runtime ☑️ Documentation ☑️ Samples ☑️ Driver components ☑️ Display Driver (如果版本比当前新) ☐ Visual Studio Integration (可选) ☐ Nsight Systems (可选) ☐ Nsight Compute (可选) -
自定义安装位置 (可选)
- 默认路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\
- 默认路径:
-
完成安装
- 等待安装完成
- 可能需要重启系统
3.3 验证安装
方法1:命令行验证
# 打开命令提示符
nvcc --version
nvidia-smi
方法2:检查环境变量
echo %CUDA_PATH%
echo %PATH% | findstr CUDA
方法3:运行示例程序
# 编译并运行设备查询示例
cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite"
.\bandwidthTest.exe
.\deviceQuery.exe
4. Linux 安装步骤
4.1 下载安装包
选择适合你发行版的安装包:
Ubuntu/Debian:
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb
CentOS/RHEL:
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-rhel8-12-1-local-12.1.0_530.30.02-1.x86_64.rpm
4.2 Ubuntu/Debian 安装
# 安装依赖
sudo apt update
sudo apt install build-essential dkms
# 安装 CUDA
sudo dpkg -i cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt update
sudo apt install cuda-toolkit-12-1
# 或者安装完整包
sudo apt install cuda
4.3 CentOS/RHEL 安装
# 安装依赖
sudo dnf install epel-release
sudo dnf install dkms
# 安装 CUDA
sudo rpm -i cuda-repo-rhel8-12-1-local-12.1.0_530.30.02-1.x86_64.rpm
sudo dnf clean all
sudo dnf install cuda-toolkit-12-1
4.4 配置环境变量
添加到 ~/.bashrc 或 ~/.bash_profile:
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda
重新加载配置:
source ~/.bashrc
4.5 验证安装
# 检查版本
nvcc --version
nvidia-smi
# 编译测试程序
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
5. 安装 cuDNN (可选但推荐)
5.1 下载 cuDNN
- 访问:https://developer.nvidia.com/cudnn
- 需要注册 NVIDIA 开发者账号
- 选择与 CUDA 版本兼容的 cuDNN
5.2 Windows 安装
- 下载 ZIP 文件
- 解压到 CUDA 安装目录:
将 bin/ 中的文件复制到 %CUDA_PATH%\bin\ 将 include/ 中的文件复制到 %CUDA_PATH%\include\ 将 lib/ 中的文件复制到 %CUDA_PATH%\lib\x64\
5.3 Linux 安装
# 解压并复制文件
tar -xvf cudnn-linux-x86_64-8.9.0.131_cuda12-archive.tar.xz
sudo cp cudnn-*/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-*/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
6. 环境配置
6.1 Windows 环境变量
系统环境变量:
CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
CUDA_PATH_V12_1 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
Path 中添加:
%CUDA_PATH%\bin
%CUDA_PATH%\libnvvp
6.2 验证完整安装
Python 测试脚本:
import torch
import tensorflow as tf
print("=== PyTorch CUDA 测试 ===")
print(f"PyTorch版本: {torch.__version__}")
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"CUDA版本: {torch.version.cuda}")
print(f"GPU数量: {torch.cuda.device_count()}")
if torch.cuda.is_available():
print(f"当前GPU: {torch.cuda.current_device()}")
print(f"GPU名称: {torch.cuda.get_device_name()}")
print("\n=== TensorFlow CUDA 测试 ===")
print(f"TensorFlow版本: {tf.__version__}")
print(f"GPU可用: {tf.test.is_gpu_available()}")
print(f"GPU设备: {tf.config.list_physical_devices('GPU')}")
7. 故障排除
7.1 常见问题
问题1:nvcc 命令未找到
# 检查环境变量
echo $PATH
# 确保 CUDA bin 目录在 PATH 中
问题2:驱动版本不兼容
# 更新驱动
sudo apt purge nvidia-*
sudo apt install nvidia-driver-535
问题3:权限问题
# 添加用户到 video 组
sudo usermod -a -G video $USER
7.2 诊断工具
Windows 诊断:
# 检查驱动
nvidia-smi
# 检查 CUDA 安装
nvcc --version
# 检查环境变量
set CUDA
Linux 诊断:
# 检查驱动和 GPU 状态
nvidia-smi
# 检查 CUDA 编译器
nvcc --version
# 检查库文件
ldconfig -p | grep cuda
# 检查设备
ls -la /dev/nvidia*
8. 卸载 CUDA
8.1 Windows 卸载
- 控制面板 → 程序和功能
- 卸载所有 NVIDIA 组件:
- NVIDIA CUDA Toolkit
- NVIDIA GPU Computing Toolkit
- NVIDIA 驱动程序 (可选)
8.2 Linux 卸载
Ubuntu/Debian:
sudo apt purge cuda-* nvidia-*
sudo apt autoremove
CentOS/RHEL:
sudo dnf remove cuda-* nvidia-*
9. 最佳实践
9.1 版本管理
使用 conda 管理 CUDA 版本:
# 创建独立环境
conda create -n myproject python=3.10
conda activate myproject
# 安装特定版本的 PyTorch 和 CUDA
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
9.2 多版本共存
符号链接管理:
# 创建符号链接指向当前使用的版本
sudo ln -sf /usr/local/cuda-12.1 /usr/local/cuda
9.3 性能优化
环境变量优化:
# 添加到 ~/.bashrc
export CUDA_DEVICE_ORDER=PCI_BUS_ID
export CUDA_VISIBLE_DEVICES=0 # 指定使用哪块GPU
export TF_FORCE_GPU_ALLOW_GROWTH=true
10. 总结
安装 CUDA Toolkit 的关键步骤:
- ✅ 检查硬件兼容性
- ✅ 下载正确版本的安装包
- ✅ 以管理员权限安装
- ✅ 配置环境变量
- ✅ 验证安装
- ✅ 安装 cuDNN (可选)
- ✅ 测试深度学习框架
按照这个指南,你应该能够成功安装和配置 CUDA Toolkit。如果遇到问题,参考故障排除部分或查阅 NVIDIA 官方文档。
1万+

被折叠的 条评论
为什么被折叠?



