CUDA Toolkit 下载与安装完整指南

CUDA Toolkit 下载与安装完整指南

1. 准备工作

1.1 检查系统兼容性

检查显卡是否支持CUDA:

  1. 右键点击桌面 → NVIDIA 控制面板
  2. 点击"系统信息" → “组件”
  3. 查看"3D设置"中的"NVCUDA.DLL"产品名称
  4. 或使用命令行:nvidia-smi

支持的GPU架构:

  • NVIDIA Tesla (所有型号)
  • NVIDIA Quadro (所有型号)
  • GeForce GTX 650 及以上
  • GeForce RTX 系列 (推荐)
  • 其他专业计算卡

1.2 检查系统要求

Windows 系统要求:

  • Windows 10 或 Windows 11 (64位)
  • 至少 4GB 可用磁盘空间
  • Visual Studio (推荐 2019 或 2022)
  • 最新的 Windows 更新

Linux 系统要求:

  • Ubuntu 18.04/20.04/22.04
  • CentOS 7/8
  • 其他主流 Linux 发行版
  • GCC 编译器

2. 下载 CUDA Toolkit

2.1 访问官方下载页面

  1. 访问 NVIDIA CUDA 下载页面:

    https://developer.nvidia.com/cuda-downloads
    
  2. 选择你的操作系统和配置:

2.2 选择合适的版本

版本选择建议:

  • 最新稳定版:适合新项目
  • LTS 版本:适合生产环境
  • 与框架兼容的版本:如 PyTorch、TensorFlow 推荐的版本

查看 PyTorch/TensorFlow 兼容性:

# PyTorch 兼容性
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# TensorFlow 兼容性
pip install tensorflow[and-cuda]

3. Windows 安装步骤

3.1 下载安装包

选择以下任一方式:

在线安装包 (推荐):

  • 文件较小,安装时下载所需组件
  • 文件名类似:cuda_12.1.0_531.14_win10.exe

离线安装包:

  • 文件较大,包含所有组件
  • 文件名类似:cuda_12.1.0_531.14_windows.exe

3.2 安装步骤

  1. 关闭所有应用程序

    • 关闭浏览器、VS Code、Python 等
    • 特别是杀毒软件
  2. 运行安装程序

    • 右键 → “以管理员身份运行”
    • 选择临时解压目录
  3. 安装选项

    ☑️ CUDA
      ☑️ Development
      ☑️ Runtime
      ☑️ Documentation
      ☑️ Samples
    
    ☑️ Driver components
      ☑️ Display Driver (如果版本比当前新)
    
    ☐ Visual Studio Integration (可选)
    ☐ Nsight Systems (可选)
    ☐ Nsight Compute (可选)
    
  4. 自定义安装位置 (可选)

    • 默认路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\
  5. 完成安装

    • 等待安装完成
    • 可能需要重启系统

3.3 验证安装

方法1:命令行验证

# 打开命令提示符
nvcc --version
nvidia-smi

方法2:检查环境变量

echo %CUDA_PATH%
echo %PATH% | findstr CUDA

方法3:运行示例程序

# 编译并运行设备查询示例
cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite"
.\bandwidthTest.exe
.\deviceQuery.exe

4. Linux 安装步骤

4.1 下载安装包

选择适合你发行版的安装包:

Ubuntu/Debian:

wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb

CentOS/RHEL:

wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-rhel8-12-1-local-12.1.0_530.30.02-1.x86_64.rpm

4.2 Ubuntu/Debian 安装

# 安装依赖
sudo apt update
sudo apt install build-essential dkms

# 安装 CUDA
sudo dpkg -i cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt update
sudo apt install cuda-toolkit-12-1

# 或者安装完整包
sudo apt install cuda

4.3 CentOS/RHEL 安装

# 安装依赖
sudo dnf install epel-release
sudo dnf install dkms

# 安装 CUDA
sudo rpm -i cuda-repo-rhel8-12-1-local-12.1.0_530.30.02-1.x86_64.rpm
sudo dnf clean all
sudo dnf install cuda-toolkit-12-1

4.4 配置环境变量

添加到 ~/.bashrc 或 ~/.bash_profile:

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda

重新加载配置:

source ~/.bashrc

4.5 验证安装

# 检查版本
nvcc --version
nvidia-smi

# 编译测试程序
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

5. 安装 cuDNN (可选但推荐)

5.1 下载 cuDNN

  1. 访问:https://developer.nvidia.com/cudnn
  2. 需要注册 NVIDIA 开发者账号
  3. 选择与 CUDA 版本兼容的 cuDNN

5.2 Windows 安装

  1. 下载 ZIP 文件
  2. 解压到 CUDA 安装目录:
    将 bin/ 中的文件复制到 %CUDA_PATH%\bin\
    将 include/ 中的文件复制到 %CUDA_PATH%\include\
    将 lib/ 中的文件复制到 %CUDA_PATH%\lib\x64\
    

5.3 Linux 安装

# 解压并复制文件
tar -xvf cudnn-linux-x86_64-8.9.0.131_cuda12-archive.tar.xz
sudo cp cudnn-*/include/cudnn*.h /usr/local/cuda/include 
sudo cp -P cudnn-*/lib/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

6. 环境配置

6.1 Windows 环境变量

系统环境变量:

CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
CUDA_PATH_V12_1 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1

Path 中添加:

%CUDA_PATH%\bin
%CUDA_PATH%\libnvvp

6.2 验证完整安装

Python 测试脚本:

import torch
import tensorflow as tf

print("=== PyTorch CUDA 测试 ===")
print(f"PyTorch版本: {torch.__version__}")
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"CUDA版本: {torch.version.cuda}")
print(f"GPU数量: {torch.cuda.device_count()}")
if torch.cuda.is_available():
    print(f"当前GPU: {torch.cuda.current_device()}")
    print(f"GPU名称: {torch.cuda.get_device_name()}")
    
print("\n=== TensorFlow CUDA 测试 ===")
print(f"TensorFlow版本: {tf.__version__}")
print(f"GPU可用: {tf.test.is_gpu_available()}")
print(f"GPU设备: {tf.config.list_physical_devices('GPU')}")

7. 故障排除

7.1 常见问题

问题1:nvcc 命令未找到

# 检查环境变量
echo $PATH
# 确保 CUDA bin 目录在 PATH 中

问题2:驱动版本不兼容

# 更新驱动
sudo apt purge nvidia-*
sudo apt install nvidia-driver-535

问题3:权限问题

# 添加用户到 video 组
sudo usermod -a -G video $USER

7.2 诊断工具

Windows 诊断:

# 检查驱动
nvidia-smi

# 检查 CUDA 安装
nvcc --version

# 检查环境变量
set CUDA

Linux 诊断:

# 检查驱动和 GPU 状态
nvidia-smi

# 检查 CUDA 编译器
nvcc --version

# 检查库文件
ldconfig -p | grep cuda

# 检查设备
ls -la /dev/nvidia*

8. 卸载 CUDA

8.1 Windows 卸载

  1. 控制面板 → 程序和功能
  2. 卸载所有 NVIDIA 组件:
    • NVIDIA CUDA Toolkit
    • NVIDIA GPU Computing Toolkit
    • NVIDIA 驱动程序 (可选)

8.2 Linux 卸载

Ubuntu/Debian:

sudo apt purge cuda-* nvidia-*
sudo apt autoremove

CentOS/RHEL:

sudo dnf remove cuda-* nvidia-*

9. 最佳实践

9.1 版本管理

使用 conda 管理 CUDA 版本:

# 创建独立环境
conda create -n myproject python=3.10
conda activate myproject

# 安装特定版本的 PyTorch 和 CUDA
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

9.2 多版本共存

符号链接管理:

# 创建符号链接指向当前使用的版本
sudo ln -sf /usr/local/cuda-12.1 /usr/local/cuda

9.3 性能优化

环境变量优化:

# 添加到 ~/.bashrc
export CUDA_DEVICE_ORDER=PCI_BUS_ID
export CUDA_VISIBLE_DEVICES=0  # 指定使用哪块GPU
export TF_FORCE_GPU_ALLOW_GROWTH=true

10. 总结

安装 CUDA Toolkit 的关键步骤:

  1. ✅ 检查硬件兼容性
  2. ✅ 下载正确版本的安装包
  3. ✅ 以管理员权限安装
  4. ✅ 配置环境变量
  5. ✅ 验证安装
  6. ✅ 安装 cuDNN (可选)
  7. ✅ 测试深度学习框架

按照这个指南,你应该能够成功安装和配置 CUDA Toolkit。如果遇到问题,参考故障排除部分或查阅 NVIDIA 官方文档。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宝哥Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值