1、冒泡排序
原理:1、冒泡排序就是取出第n个数字,然后和 第n + 1 个数字相比较,如果arr[n] > arr[n + 1],则调换两个的位置
2、直到 n = 数组总数量 - 1 , 完成对于数组的遍历,保证最大的数据放到最后的位置。
3、n ++ ,直到 n = 数组总量 - 1,否则重复前两步
事例:
NSInteger
i , j ;
for (i = 0 ;i < n ;i ++ ) {
for (j = 1 ; j < n - i; j ++) {
if (arr[j - 1 ] > arr[j]) {
int temp = arr[j - 1 ];
arr[j - 1 ] = arr[j];
arr[j] = temp;
}
}
for (i = 0 ;i < n ;i ++ ) {
for (j = 1 ; j < n - i; j ++) {
if (arr[j - 1 ] > arr[j]) {
int temp = arr[j - 1 ];
arr[j - 1 ] = arr[j];
arr[j] = temp;
}
}
}
优化:
(1)
依照冒泡排序的原理可知,每次循环,arr[n]都会和arr[n+1]相比较,如果在本次排序中,没有发生位置变化,则,可知冒泡排序已经完成,就不必再继续下面的操作了,所以,可以设置标记,如果在某次循环中没有任何的数据变化,则表示所有的数据已经有了序列。
NSInteger
i,j;
BOOL flag = YES ;
for (i = 0 ; i < n && flag == YES ; i ++) {
flag = NO ;
for (j = 1 ; j < n - i; j ++) {
if (arr[j - 1 ] > arr[j]) {
flag = YES ;
int temp = arr[j - 1 ];
arr[j - 1 ] = arr[j];
arr[j] = temp;
}
}
BOOL flag = YES ;
for (i = 0 ; i < n && flag == YES ; i ++) {
flag = NO ;
for (j = 1 ; j < n - i; j ++) {
if (arr[j - 1 ] > arr[j]) {
flag = YES ;
int temp = arr[j - 1 ];
arr[j - 1 ] = arr[j];
arr[j] = temp;
}
}
}
(2)
对已第一种优化来说,还有一个问题,就是说,我们在排序的过程中,依旧是需要从头遍历到尾的去排序,根据冒泡算法的原理,可以知道,每次排序的最后一次调换位置n 和 n+1,即表示arr[n]之后的数据都已经是有序的,所以我们只需要记住 n ,并下次排列时,只排列 n 之前的数字即可。
NSInteger
i ,k;
NSInteger flag = n;
while (flag > 0 ) {
k = flag;
flag = 0 ;
for (i = 1 ; i < k ; i ++) {
if (arr[i - 1 ] > arr[i]) {
int temp = arr[i - 1 ];
arr[i - 1 ] = arr[i];
arr[i] = temp;
flag = i;
}
}
NSInteger flag = n;
while (flag > 0 ) {
k = flag;
flag = 0 ;
for (i = 1 ; i < k ; i ++) {
if (arr[i - 1 ] > arr[i]) {
int temp = arr[i - 1 ];
arr[i - 1 ] = arr[i];
arr[i] = temp;
flag = i;
}
}
}