快速排序是建立在冒泡排序的基础上升级的一种方式,排序的效率比较高,因此经常被使用。
对于快速排序来说,直接写出是有些难度的,可以用以下的方式来解释。
原理:
1、在一组数列中选择一个数a[n]作为基础数
2、进行分区,将比a[n] 大的数全部放在它的右边,比它小的数放在它的左边。
3、将根据a[n] 分区的左右两组数在组内分区,重复2、3 步,直到区间内只有一个数。
快速排序成为分治法,但是并没有对快速排序的步骤进行完整的概括。可以进一步说明为:
挖坑填数 + 分治法
以一个数组作为示例,取区间第一个数为基准数。
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
72 | 6 | 57 | 88 | 60 | 42 | 83 | 73 | 48 | 85 |
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从 j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当 i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
48 | 6 | 57 | 88 | 60 | 42 | 83 | 73 | 88 | 85 |
i = 3; j = 7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
48 | 6 | 57 | 42 | 60 | 72 | 83 | 73 | 88 | 85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
代码:
void quickSortSelector(int a[],int low ,int high)
{
if (low < high) {
int prvot = quickSortArray(a, low, high);
quickSortSelector(a, 0, prvot);
quickSortSelector(a, prvot + 1, high);
}
}
int quickSortArray(int a[], int low , int high)
{
int temp = a[low];
while (low < high) {
while (low < high && a[high] >= temp) {
high --;
}
if (low < high) {
a[low ++] = a[high];
}
while (low < high && a[low] <= temp) {
low ++;
}
if (low < high) {
a[high -- ] = a[low];
}
}
a[low] = temp;
return low;
{
if (low < high) {
int prvot = quickSortArray(a, low, high);
quickSortSelector(a, 0, prvot);
quickSortSelector(a, prvot + 1, high);
}
}
int quickSortArray(int a[], int low , int high)
{
int temp = a[low];
while (low < high) {
while (low < high && a[high] >= temp) {
high --;
}
if (low < high) {
a[low ++] = a[high];
}
while (low < high && a[low] <= temp) {
low ++;
}
if (low < high) {
a[high -- ] = a[low];
}
}
a[low] = temp;
return low;
}