堆排序与快速排序,归并排序都是时间复杂度为O(N*logN) 的排序方法。在学习堆排序之前,首先讲解一下数据结构当中的二叉堆。
图一
如图一所示,就是一个二叉堆。
二叉堆满足的特性为:
1、父节点的键值总是大于或等于(小于或等于)任何一个子节点的键值
2、每个节点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)
堆排序的原理:
1、将初始数列 根据二叉堆 的特性构建成大顶堆 (即 最大值 在 第 0 的位置上)
2、设定i = n (n 为初始数列的数据总数), 将 arr[0] 与 arr[i] 交换,则最大值排到了整个序列当中的最后位置
3、i = i -1,再将 0 ~ i 之间的数据重新按照二叉堆的特性排列,又形成大顶堆。
4、重复 2 、 3 步骤,直到 i = 1,则完成了相应的排序
代码:
void
heapSortSelector(
int
arr[],
int
n)
{
int i;
for (i = n / 2 - 1 ; i >= 0 ; i --) {
heapSortArray (arr, i, n);
}
for (i = n - 1 ; i > 0 ; i --) {
int temp = arr[i];
arr[i] = arr[ 0 ];
arr[ 0 ] = temp;
heapSortArray (arr, 0 , i);
}
}
void heapSortArray( int arr[], int i, int n)
{
int child,temp;
for (temp = arr[i]; i * 2 + 1 < n ;i = child ) {
child = 2 * i + 1 ;
if (child < n - 1 && arr[child] < arr[child + 1 ]) {
child ++;
}
if (arr[child] > temp) {
arr[i] = arr[child];
}
else
{
break ;
}
}
arr[i] = temp;
{
int i;
for (i = n / 2 - 1 ; i >= 0 ; i --) {
heapSortArray (arr, i, n);
}
for (i = n - 1 ; i > 0 ; i --) {
int temp = arr[i];
arr[i] = arr[ 0 ];
arr[ 0 ] = temp;
heapSortArray (arr, 0 , i);
}
}
void heapSortArray( int arr[], int i, int n)
{
int child,temp;
for (temp = arr[i]; i * 2 + 1 < n ;i = child ) {
child = 2 * i + 1 ;
if (child < n - 1 && arr[child] < arr[child + 1 ]) {
child ++;
}
if (arr[child] > temp) {
arr[i] = arr[child];
}
else
{
break ;
}
}
arr[i] = temp;
}