什么是熵-------第四部分

4. Boltzmann 熵

熱力學中熵是一個極其重要的概念,最初由 Clausius 引進。 後來 L. Boltzmann 在他發表在1866年關於氣體動力學理論的開創性工作中給出了熵的另一形式。 這個熵在物理、化學的若干領域裡自始至終扮演著關鍵性的角色。 可是 Boltzmann 熵和我們先前定義的 Kolmogorov 熵或拓樸熵並非一致。 儘管如此,它們在數學的背景下,仍存在著千絲萬縷的聯繫。 在這最後一節,我們將遨遊於 Boltzmann 熵的數學描述。

設 $(X,p_1,\cdots,p_n)$ 為一有限樣本空間, 則其 Shannon 熵為$H(p_1,\cdots,p_n)=-\sum_{i=1}^{n}p_i \log{p_i}$ ,現設 $(X,\Sigma,\mu)$ 為一測度空間。 記 L'(X) 為定義在 X 上的 Lebesgue 可積函數全體。 L'(X) 中滿足等式 

\begin{displaymath}\int_{x} f(x)d \mu =1\end{displaymath}

的非負函數了  f(x)  稱為密度函數,其集合記為 D。 易見等式 

\begin{displaymath}\mu_f(A)=\int_{A}f(x)d\mu \quad A\in \Sigma\end{displaymath}

定義了  $(X,\Sigma)$  上的一個概率測度,其對應的密度就是  f(x) 。 概率空間 $(X,\Sigma,\mu_f)$  可看成是無窮樣本空間。 由 Shannon 熵的啟迪,我們可以如下定義  f 的 Boltzmann 熵。 為此,令函數  $\eta(\mu)$  定義為 

\begin{displaymath}\eta(\mu)=\left\{\begin{array}{cc}-u\log{u} & u>0 \\0 & u=0\\\end{array}\right.\end{displaymath}

$\eta(u)$  的圖像由圖4-1表示。



圖4-1

定義4-1:
設   $f\in D$  且   $\eta(f)\in L'(X)$  則   f  的 Boltzamann 熵定義為  

\begin{displaymath}H(f)=\int_{x} \eta(f(x)) d \mu=-\int_{x} f(x) \log{f(x)}d \mu\end{displaymath}

由 $\eta(u)$ 定義知, $\eta '(\mu)=-(\log{u}+1)$, $\eta ''(u) = -\frac{1}{u} <0$。因而η是$[0,\infty)$上的嚴格遞增凹函數, 由Taylor展式,任給$u,v \geq 0$, 

$\displaystyle \eta(u)$=$\displaystyle \eta(v)+\eta '(v)(u-v)+ \frac{\eta ''(\xi)}{2!}(u-v)^2$(1)
 <$\displaystyle \eta(v) + \eta '(v)(u-v)$(2)

即, 

\begin{displaymath}-u\log{u} \leq -v \log{v}-(\log{v}+1)(u-v)\end{displaymath}

簡化之,我們便有有名的 Gibbs 不等式, 

\begin{displaymath}u-u \log{u} \leq v- u\log{v}\end{displaymath}

任給函數  $f,g \in D$ ,由 Gibbs 不等式和積分的單調性, 

\begin{displaymath}\int_{X} (f(x)-f(x)\log{f(x)}) d\mu\leq \int_{X} (g(x)-f(x) \log{g(x)}d \mu\end{displaymath}

由於  $\int_{x}f(x)d\mu =\int_{x} g(x) d \mu =1$ ,我們有如下重要的積分不等式:  $\forall f,g \in D$  

\begin{displaymath}-\int_{X} f(x) \log{f(x)}d\mu\leq \int_{X} f(x) \log{g(x)}d\mu \eqno{(4-1)}\end{displaymath}

在有限的樣本空間  (X,p1 ,…, pn)  中,Shannon 熵在  p1=p2=  …  =pn=n  時為最大,Boltzmann 熵在概率測度空間裡也有類似的性質。

命題4-2:
設   $\mu(X) < + \infty$,則密度函數   $f_0(x)\equiv \frac{1}{\mu(X)}$  滿足  

\begin{displaymath}H(f_0)= \log{\mu (X)} = \mbox{max}\{ H(f): f \in D\}\end{displaymath}

證明:
首先易見   $f_0 \in D$。其次,任給   $f\in D$,由不等式(4-1)  

\begin{eqnarray*}H(f)&=& -\int_{X} f(x) \log{f(x)} d\mu \\&\leq& -\int_{X} f......& \log{\mu(X)} \int_{X} f(x) d\mu \\&=& \log{\mu(X)} = H(f_0)\end{eqnarray*}


為了描述一些與Boltzmann熵有關的條件極值問題。 我們引進一些概率論常用的術語。設X為一個隨機變量(Random Variable) ,即X為某一固定樣本空間上的可測實函數。 f(x)為這個測度空間的密度函數,則 

\begin{displaymath}\mbox{E}(X)=\int_{\infty}^{\infty} xf(x)dx\end{displaymath}

稱為  X  的期望值 (Expected Value 或 Expectation)。 而數 

\begin{displaymath}\mbox{Var}(X)=\int_{-\infty}^{\infty} (x-\mbox{E}(X))^2f(x)dx\end{displaymath}

則稱為  X  的變異數 (variance)。期望值是關於於隨機變量  X  平均值的一個度量, 變異數則表示隨機變量偏離其平均值的程度。下列性質,可以輕易的被驗證:

(i)   $\mbox{E}(aX+bY)=a\mbox{E}(X)+b\mbox{E}(Y)$
(ii)   $\mbox{Var}(cX)=c^2 \mbox{Var}(X)$
(iii)   $\mbox{Var}(X)=\mbox{E}(X^2)-\mbox{E}(X)^2$
(iv) 若   X  和   Y「獨立(independent)」則   $\mbox{Var}(X+Y)=\mbox{Var}(X)+\mbox{Var}(Y)$

設有一列獨立隨機變量 $\{X_{k}\}_{k \geq 1}$, $\mbox{E}(X_k)=m_k$, $\mbox{Var}(X_k-m_k)=\sigma_k^2$,令 

\begin{displaymath}S_n=\sum_{k=1}^{n}(X_k-m_k)\end{displaymath}

則, 

\begin{eqnarray*}\mbox{Var}(S_n)&=&\mbox{Var}(\sum_{k=1}^{n}(X_k-m_k)) \\&=& \sum_{k=1}^{n} \mbox{Var}(X_k-m_k)= \sum_{k=1}^{n} \sigma_k^2\end{eqnarray*}


我們標準化  Sn ,即令 

\begin{displaymath}T_n = \frac{S_n}{\sqrt{\mbox{Var}(S_n)}}\end{displaymath}

則  $E(T_n)=0,\mbox{Var}(T_n)=1$

概率理論中有個非常重要的基本定理:中央極限定理 (central limit theorem)。它大概的意思是說, 在漸近狀態下,通常隨機變量 Tn 的概率分佈 (Probability distribution) 是遵循 Gauss 分佈規律的,也就是說, 

\begin{displaymath}\lim_{n \rightarrow \infty } P(a \leq T_n \leq b) =\frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{u^2}{2}} du\end{displaymath}

其中  P  為樣本空間的概率分佈。

但是,為什麼大家都遵循的是 Gauss 分佈規律,而不是其他的分佈規律呢?事實上, 這和熱力學第二定律有異曲同工之妙。熱力學第二定律大致上說,自然界的規律是,一切動態系統都是在向「熵」高的方向發展。 從這個角度來看,在$\mbox{E}(T_n)=0$$\mbox{Var}(T_n)=1$ 的條件下, Gauss 分佈的確有最大的 Boltzmann 熵,我們用下面的命題,對這點略加說明。

記 $\overline{D}=\{ f \in D : \int_{-\infty}^{\infty} xf(x) dx =0,\int_{-\infty}^{\infty} x^2 f(x)dx =1 \}$

命題4-3
設   $f_0(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$,則   $f\in D$  且  

\begin{displaymath}H(f_0)= \mbox{max} \{ H(f): f \in \overline{D}\}= \log{\sqrt{2 \pi}}+\frac{1}{2}\end{displaymath}

證明:
由公式   $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$  ,易知   $\int_{-\infty}^{\infty} f_0(x)dx= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx =1$  即 $f_0 \in D$,又由部分積分法易證  

\begin{displaymath}\int_{-\infty}^{\infty} x f_0(x)dx =0\end{displaymath}

以及  

\begin{displaymath}\int_{-\infty}^{\infty} x^2f_0(x) dx =1\end{displaymath}

則   $f_0(x) \in \overline{D}$,由不等式(4-1)  

\begin{eqnarray*}H(f) &= & \int_{-\infty}^{\infty} f(x) \log{f(x)}dx\\&\leq&......sqrt{2\pi}} ]dx \\&=& \log{(\sqrt{2\pi})}+\frac{1}{2} = H(f_0)\end{eqnarray*}


類似地,記 $\overline{\overline{D}}=\{f \in D,\int_{0}^{\infty} xf(x) = \frac{1}{\lambda} \}$ 比照上述證明,我們有

命題4-4:
設   $f_0(x)=\lambda e^{- \lambda x}$,則   $f_0 \in \overline{\overline{D}}$, 且  

\begin{displaymath}H(f_0) =\mbox{max}\{ H(f): f \in \overline{\overline{D}} \}=1 -\log{\lambda}\end{displaymath}

上述兩命題,可推廣到下述一般情形。設 $g\in L^{\infty}$,給定約束 

\begin{displaymath}\int_{x} g(x)f(x)dx = \overline{g}\end{displaymath}

H(f) 在此約束下,最大值的密度函數應為 

\begin{displaymath}f_0(x) = \frac{e^{- rg(x)} }{\int_X e^{-rg(x)}dx}\end{displaymath}

其中 r 為一常數。同樣,若有兩個約束 

\begin{displaymath}\int_{X} g_1(x)f(x)dx = \overline{g_1}\end{displaymath}

和 

\begin{displaymath}\int_{X} g_2(x)f(x)dx = \overline{g_2}\end{displaymath}

則密度函數 

\begin{displaymath}f(x)= \frac{e^{-(r_1g_2(x)+r_2g_2(x))}}{\int_X e^{-(r_1g_2(x)+r_2g_2(x))} dx }\end{displaymath}

給出了 H(f) 在這兩個約束下的最大值 H(f0) , 其中 r1,r2 為兩常數。更一般地,我們有

命題4-4:
設   $(X,\Sigma,\mu)$  為一測度空間,非負函數   $g_1,\cdots,g_m \in L^{\infty}(X)$  及正常數   r1,…, rm  滿足條件  

\begin{displaymath}\frac{\int_{X} g_i(x) \prod_{i=1}^{m} e^{-r_jg_j(x)} d \mu}......{m} e^{-r_jg_j(x)} d \mu }=\overline{g_i},\quad i=1.\cdots,m\end{displaymath}

則   H(f)  在約束  

\begin{displaymath}\int_{X} g_i(x)f(x) dx = \overline{g}_i,\quad i=1,\cdots,m\end{displaymath}

下最大密度值函數為  

\begin{displaymath}f_0(x)=\frac{\prod_{i=1}^{m} e^{-r_i}{g_i(x)}}{\int_{X} \prod_{i=1}^{m} e^{-r_ig_i(x)} d \mu }\end{displaymath}

證明:
為簡單起見,令   $z= \int_X \prod_{i=1}^{m}e^{-r_ig_i(x)} d \mu $,則   $f_0(x)= z^{-1} \prod_{i=1}^{m} e^{-r_i}{g_i(x)}$。 不難算出  

\begin{displaymath}H(f_0)= \log{z}+ \sum_{i=1}^{m} r_i \overline{g}_i\end{displaymath}

任給密度函數   f  滿足上述約束條件,由不等式(4-1)知,  

\begin{eqnarray*}H(f)&\leq& -\int_X f(x) \log{[z^{-1} \prod_{i=1}^{m} e^{-r_ig......] d\mu \\&=& \log{z} + \sum_{i=1}^{m} r_i\overline{g}_i=H(f_0)\end{eqnarray*}


特別,當 m=1 時,若 g(x) 看成是系統的能量時, f0(x)= z-1 e-rg(x) 恰好就是 Gibbs 典型分怖函數,且 $z=\int_X e^{-rg(x)d\mu}$ 為其分析函數,而對應的最大熵$H(f_0)=\log{z}+r\overline{g}$ 恰好就是眾所周知的熱力學熵。

 

转载自:http://episte.math.ntu.edu.tw/articles/mm/mm_13_3_01/index.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值