近似熵、样本熵、模糊熵、排列熵摘抄总结

本文介绍了近似熵、样本熵及模糊熵等概念,探讨了它们如何衡量时间序列的复杂度,包括各自的定义、作用及算法分析。同时,还讨论了排列熵作为另一种评估手段的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文总结摘抄于多个网上链接,用于学习和整理用途
1、模糊熵、样本熵、近似熵都是什么?反映了什么?
2、近似熵理论相关知识与代码实现
3、样本熵理论相关知识与代码实现
4、模糊熵理论相关知识与代码实现
5、脑电信号特征提取——排列熵

熵值,说白了就是混乱度。这三个数据都是评价波形前后部分之间的混乱程度的,或者说是评价波形前后重复性的,也就是包含的子频率。熵越大,波形中各个频率越多,熵越小,波形中乱七八糟的频率越少。

1. 近似熵(1991)

image

定义

近似熵是一个随机复杂度,反应序列相邻的m个点所连成折线段的模式的互相近似的概率与由m+1个点所连成的折线段的模式相互近似的概率之差。

作用

用来描述复杂系统的不规则性,越是不规则的时间序列对应的近似熵越大。反应维数改变时产生的新的模式的可能性的大小。

对于eeg信号来说,由于噪声存在、和信号的微弱性、多重信号源叠加,反映出来的是混沌属性,但是同一个人在大脑活动相对平稳的情况下,其eeg近似熵应该变化不大。

算法分析

image

参数选择:通常选择参数m=2或m=3;通常选择r=0.2∗std,其中std表示原时间序列的标准差.

2. 互近似熵

从近似熵定义引申出来的,近似熵描述的是一段序列的自相似程度,互近似熵比较的是两段序列的复杂度接近程度;熵值越大越不相似,越小越相似;

互近似熵计算和近似熵的步骤一样,把计算X(i)和X(j)之间的距离改为计算序列a的向量X(i)和序列b的向量Y(j)的距离;相似容限r为两个原序列的0.2倍协方差;

3. 样本熵(2000)

image

样本熵(SampEn)是基于近似熵(ApEn)的一种用于度量时间序列复杂性的改进方法,在评估生理时间序列的复杂性和诊断病理状态等方面均有应用

算法分析

image

其中, ln表示自然对数, m和r由第2步定义.
参数选择:嵌入维数 m 一般取1或2;相似容限 r的选择在很大程度上取决于实际应用场景,通常选择 r = 0.1 ∗ std ∼ 0.25 ∗ std ,其中 std表示原时间序列的标准差.

近似熵与样本熵理论上的对比[2]

设 B 为维数为 m时,时间序列的自相似概率; A为维数为 k=m+1时,时间序列的自相似概率,得出 CP=A/B。近似熵的计算是以 −ln(CP)为模型,并且计算出了所有模型的平均值。为了防止出现计算 ln(0)的情况,近似熵在算法的第4步中包含了与自身向量的比较,这种方式与新信息观点是不相容的,所以一定会存在偏差。不同的是,样本熵计算的是和的对数,且不包含与自身向量的比较,所以其优势在于包含更大的A、B,以及更加准确的CP估计.
与近似熵相比,样本熵具有两个优势:样本熵的计算不依赖数据长度;样本熵具有更好的一致性,即参数m和r的变化对样本熵的影响程度是相同的.

4. 模糊熵(2007)

image

与近似熵(ApEn)和样本熵(SampEn)的物理意义相似,模糊熵(FuzzyEn)衡量的也是新模式产生的概率大小(Fuzzy思想,给出概率而不是定论),测度值越大,新模式产生的概率越大,即序列复杂度越大。

算法

image

通常情况下,较大的m能更细致地重构系统的动态演化过程。相似容限r的取值也是一个值得考虑的问题,过大的相似容限会导致信息丢失,相似容限值越大,丢失的信息越多,而太小的相似容限度则会增加结果对噪声的敏感性,一般定义r为r*SD,其中SD(Standard Deviation)为原一维时间序列的标准差[1,2]。

5. 排列熵

排列熵同样和前面提到的近似熵、样本熵以及模糊熵一样,都是用于衡量时间序列复杂程度而的指标。只不过,它在计算重构子序列之间的复杂程度时,引入了排列的思想。

算法

在这里插入图片描述
排列熵 Hp​ 的大小衡量信号时间序列的随机变化程度, Hp​ 的值越大,表示信号时间序列越随机,信号越复杂;反之,则说明信号序列越规则,复杂度较小。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值