高斯消元法(一):简介

高斯消元法是求解线性方程组的一种方法,尤其适用于低阶稠密方程组。它通过消元将方程组转化为上三角形形式,然后进行回代求解。在实际应用中,为了考虑计算误差和代码效率,出现了多种改进算法,如列主元法、全主元法、LU分解法等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯消去法

       高斯消去法主要用于求解线性方程组的解,但由于算法相对复杂,因此常用于低阶稠密方程组(个人理解稠密即为方程组中的系数项为0的个数少,也就是系数矩阵A零元素的个数少,反之则为稀疏方程组)。

如已知一个n元n次的方程组,代数形式即可写成如下形式:


 

我们可以将其转化为矩阵形式(Ax=b),其中A为系数矩阵,如下:


 

基本思想:

       首先通过逐次消元法将Ax=b化为等价的上三角形方程组(即系数矩阵A中对角线以下的元素都为0),再求解这个上三角的方程组。(个人认为这个高斯消去法最大的好处是可以在计算机上实现,方便编程。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值