leetcode题解:第300题Longest Increasing Subsequence

https://leetcode-cn.com/problems/longest-increasing-subsequence/
这道题是动态规划的典型例题,有 O 2 O^2 O2 O ( n l o g n ) O(nlogn) O(nlogn)两种解法。

解法一

O ( n 2 ) O(n^2) O(n2)的解法比较容易想到,要找最长的上升子序列,我们维护一个dp[n]数组,用dp[i]来表示以第i个元素为结尾的最长上升子序列长度,例题中dp[0] = 1, dp[3] = 2。如何更新这个数组呢?
按照定义,我们肯定要更新所有的dp[i],因此要遍历整个数组一次,当遍历到nums[i]时,要利用前面的数据来更新dp[i]

  • 子序列是上升的,那么肯定要找nums[j] < nums[i]
  • 要维护最长的子序列,那么就要找最大的dp[j],最终dp[i] = dp[j] + 1

最终答案自然就是最大的那个dp[i]

代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int dp[nums.size()]; // dp[i]:以第i个数字为结尾的最长上升子序列长度
        int result = 0;
        for (int i = 0; i < nums.size(); ++i) {
            int max_dp = 0;
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i] && dp[j] > max_dp) max_dp = dp[j];
            }
            dp[i] = max_dp + 1;
            result = max(result, dp[i]);
        }
        return result;
    }
};
复杂度分析

算法遍历数组一次需要 O ( n ) O(n) O(n),每次更新dp[i]时又要遍历所有的j < i,需要 O ( n ) O(n) O(n),因此总的时间复杂度为 O ( n 2 ) O(n^2) O(n2),空间复杂度为 O ( n ) O(n) O(n)

解法二

看到时间复杂度要求中的这个 l o g n logn logn,我们知道要用到二分法来解决这个问题。如果继续采用解法一中的dp数组,是没法用二分法的,换言之,解法一的时间复制度没法优化。
重新定义dp数组,令dp[i]代表长度为i的最长上升子序列的末尾元素,如果有多个这种元素,取最小的那个(不是下标)。根据定义,我们可以得知dp[i]是关于i单调递增的,证明如下:

  • 对于dp[j] > dp[i],如果i > j,那么删除掉i对应的子序列的末尾i - j个元素,得到长度为j的最长上升子序列,设其末尾元素为num。易知num < dp[i] < dp[j],那么dp[j]就不是长度为j的最长上升子序列的末尾元素中最小的那个,与定义不符,因此i < j

定义len为最长上升子序列长度,初始时len = 1, dp[1] = nums[0]

同样地,我们先遍历整个数组来更新dp,对于遍历到的nums[i]

  1. 如果nums[i] > dp[len],则把nums[i]加入到这个子序列的末尾,dp[++len] = nums[i]
  2. 否则,nums[i]不会导致子序列的长度增加,但会导致前面的dp的更新。对于j < len,我们找到dp[j - 1] < nums[i] < dp[j],更新dp[j] = nums[i],即找到第一个大于nums[i]dp[j],更新其值。

上述第二点可以用二分查找来完成,因为dp数组是单调递增的。
最终答案即为len

代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int dp[nums.size() + 1]; // dp[i]: 长度为i的最长上升子序列的最末元素的最小值
        int len = 1;
        dp[1] = nums[0];
        for (int i = 0; i < nums.size(); ++i) {
            if (nums[i] > dp[len]) dp[++len] = nums[i];
            else {
                int left = 1, right = len;
                while (left <= right) {
                    int mid = (left + right) / 2;
                    if (dp[mid] >= nums[i]) right = mid - 1;
                    else left = mid + 1;
                }
                dp[left] = nums[i];
            }
        }
        return len;
    }
};
复杂度分析

时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn),空间复杂度 O ( n ) O(n) O(n)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值