机器视觉05——光源类型及选型目标
之前,光和色相关的内容,已经通过如下四篇作品予以介绍,可以先过一过:
机器视觉01——向光而生,从0出发,认识光与色-CSDN博客 https://blog.csdn.net/chenfuyun88/article/details/140130329?spm=1001.2014.3001.5502http://机器视觉01——向光而生,从0出发,认识光与色-CSDN博客 https://blog.csdn.net/chenfuyun88/article/details/140130329?spm=1001.2014.3001.5502机器视觉02——向光而生,从0出发,配色相关-CSDN博客 https://blog.csdn.net/chenfuyun88/article/details/140134602?spm=1001.2014.3001.5502
http://机器视觉02——向光而生,从0出发,配色相关-CSDN博客 https://blog.csdn.net/chenfuyun88/article/details/140134602?spm=1001.2014.3001.5502机器视觉03——向光而生,精彩光色,色彩冷暖、易见度及应用-CSDN博客 https://blog.csdn.net/chenfuyun88/article/details/140217026?spm=1001.2014.3001.5502
http://机器视觉03——向光而生,精彩光色,色彩冷暖、易见度及应用-CSDN博客 https://blog.csdn.net/chenfuyun88/article/details/140217026?spm=1001.2014.3001.5502
光源在视觉系统重要性
机器视觉系统所有信息均来源于图像,图像质量对整个视觉系统至关关键。
因此,机器视觉的核心,是图像采集和图像处理。图像采集解决如何获取高质量图片,而图像处理则是如何实现准确、有效的算法。

一个机器视觉项目图像关键特征明显与否,对于后续视觉处理成败、效果、难度具有决定性作用,从而对项目成功或失败,顺利或曲折,也就起到了决定性作用。
为了获得关键特征明显、高质量、便于后续处理的图像,机器视觉系统的打光,则成为重要关键因素。
如果:我们足够了解光,正确选择机器视觉光源,打光良好,后面算法就变得不是问题!
夸张点说:视觉系统光源定成败!
光源类型简介
这里,主要从机器视觉常用光源的类型,予以介绍。
机器视觉光源,通常使用可见光,也会使用不可见光。
1、可见光光源
一般人的眼睛可以感知的电磁波波长大约在380~760nm之间。这个范围包括了从紫色到红色的所有颜色,按照波长从长到短依次为:红、橙、黄、绿、蓝、靛、紫。
常见的几种可见光光源,有白炽灯、日光灯、水银灯和钠光灯等。现阶段可见光光源,普遍采用LED光源。
通常,可见光的光能稳定性不高。因此良好的光源要求光能在一定程度上保持稳定。另一方面,环境光有可能影响光源,从而影响成像质量,必要时采用加防护屏等方法来减少环境光影响。
2)不可见光光源
不可见光源,包括红外线和紫外线等,这些光线具有一定波长和频率,而对于人眼来说,它们的波长范围是不可见的,因此被称为不可见光。
如前述, 视觉系统通常主要采用LED光源(除非情况特别),按照通常惯例,综合结构形状及特性来看:
3)应用最多的光源
环形光源、条形光源、背光源(平面光源)、开孔平面光源、隧道光源;
4)应用较多的光源
同轴光源、远心光源、穹顶光源、线光源、点光源;
5)特殊情况应用光源
红外光源、紫外光源、激光光源等。
这些光源各自特点不同,接下来针对每种光源特点及应用,逐一展开介绍。
当然,光源分类方法很多,比如按照发光原理分类、形状结构分类,按照颜色分类,按照色温,按照发光体类型等等,不去一一罗列。
光源选型目标
光源选择,以成像图片具有后续处理所需明显关键特征为首要目标。通常,光源选择应满足以下要求:
1、良好的对比度
对比度对机器视觉来说非常重要。机器视觉应用的光源照明,很重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生很大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够确保需要检测的特征突出于其他背景。光源光照强度要足够,较高信噪比,实现良好的对比度,利于后续图像处理。

2、适当的亮度
当对比选择两种光源的时候,通常选择是选择更亮的那个,但是不得过度曝光。当光源不够亮时,可能有三种不好的情况会出现:第一,相机的信噪比不够。由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,因光源亮度不够,必然要加大光圈,从而导致减小了景深。第三,当光源亮度不够,自然光等随机光对成像影响增大。

3、均匀性及鲁棒性
为实现高质量成像效果,光源在有效的照射范围内,必须保证均匀性,灰度值标准差要尽可能小。光源应具有较宽光谱范围,可对不同材料物体实现良好打光。

优良的机器视觉光源,要求对部件位置(或系列化被测部件)敏感度很小。当光源放置在摄像头视野的不同区域或不同角度时,图像应不会随之明显变化。方向性很强的光源,增大了高亮区域的镜面反射发生可能性,这不利于被测物特征提取。
4、性价比
性价比方面,重点关注价格与寿命。
低成本其实有点伪命题,但是性价比肯定有选择。
目前,没有完全通用的机器视觉光源照明标准,加之项目现场千变万化,所以针对每个特定的应用实例,要针对性选择相应照明装置,以达到最佳成像效果。

通常,根据现场情况,在满足光源需求前提下,选择专业光源厂家定型产品更为妥当——定型产品在可靠性、经济性、货期、售后、应急等需求方面,都容易得到满足和保障,更有利于机器视觉项目的开展和后期运维。
在现有定型光源产品其实无法满足,需要定制特殊光源的,定制光源不仅要满足性能要求,同时应选择具有较好稳定性、较长寿命的产品,要保证光源在长时间运行状态下,能够持续稳定满足照明要求。
5、其他
光源选择还需不仅仅需要考虑上述要求,还要满足项目本身非技术性要求等等,比如货期、质保响应,产品认证等,不再一一赘述。
在从事电气自控相关工作20多年过程中,对于机器视觉应用的项目心得体会,在此分享给大家,供参考。偏颇、不足之处,望指正!
总结
机器视觉项目一定程度来讲,可以说打光效果定成败。好的光源选择实现的打光效果,必须保证成像图片中被测对象检测目标特征突出,达到强化特征,简化算法的目的。
下期继续进一步为大家分享,机器视觉光源打光相关内容,欢迎探讨,谢谢关注!
对于想从深层次了解打光基础,了解光与色相关内容,欢迎查阅该链接系列文章:《 机器视觉01——向光而生,从0出发,认识光与色》