4.4.7 Iterative Methods

Improved Equipment and Techniques for Dynamic Shimming in High Field MRI

Dr. Michael Poole 2007

4.4.7  Iterative Methods

Optimisation of the homogeneity, efficiency, inductance etc. may also be achieved by iterative techniques. Most optimisation methods work by allowing the positions of discrete wires as free parameters in the optimisation routine. Wong et al. [114] used an iterative technique to design a Z-gradient coil by allowing the positions of the loops of wires to be iteratively adjusted so as to minimise an error function characterising the field error and/or the coil inductance. The gradient of the error function with respect to the free parameters is also calculated for each iteration and the parameter space is searched by conjugate gradient descent (CGD), a first-order optimisation algorithm. There are several other examples of the use of CGD in gradient coil design [115,116, 117, 118].

The most commonly used iterative optimisation algorithm in gradient coil design has been simulated annealing (SA). This is because it is excellent at avoiding local minima in the error function when finding the global minimum. It was first used to adjust the positions of circular loops of wire so as to generate a coil producing a highly uniform Z-gradient [119]. SA was later used to design X-gradient coils by parameterising the positions of the wire elements [120]. Crozieret al. described one quadrant of the X-gradient coil as a series of concentric circles deformed by transformation mapping with much fewer free parameters [121]. The SA algorithm has been used extensively to optimise parameters in the design of various gradient and shim coil[122, 123, 124, 125, 126, 127, 128,129, 130, 131, 132, 133, 134, 98, 135, 136, 137, 138].

Another common stochastic optimisation technique is to mimic Mendelian evolution, and allow better solutions to the problem to "survive", "mutate" and "breed" to form the solutions to the next iteration. This genetic algorithm (GA) has been applied to the design of gradient coils in a similar way to CGD and SA so as to produce more linear and compact cylindrical Z-gradient coils [139], X-gradient coils [140,141], and bi-planar coils [142, 143].

Adamiak et al. [144] used a zeroth-order Powell optimisation (one that only uses the result of the Biot-Savart calculation, and not its derivative) to adjust the positions of wire segments iteratively so as to generate a four-turn X-gradient coil. The Monte Carlo (MC) method has also been applied to gradient and shim coil design [145,146]. Linear [147] and quadratic [148] programming are other options for optimising gradient coil design.

Iterative coil design techniques often have the advantage that they work directly with the wires of the coil design. The magnetic field, and therefore the error function to optimise, is calculated by direct integration of the Biot-Savart Law (Eq. (4.1)) over the wires. When approximating the continuous current density (§ 4.4.2 to § 4.4.6) in terms of a small number of turns of wire, the approximation becomes less valid. Hence, iterative methods, using discrete wires work better for few wires than continuous current density methods. However, iterative methods are considerably more computationally intensive, and tend to produce wire patterns with abrupt changes in directions. These changes can introduce high order spherical harmonics in the magnetic field. These methods also do not need there to be more free coil design coil parameters than field parameters.

weixin063传染病防控宣传微信小程序系统的设计与实现+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值