斜率优化DP

Division HDU - 3480 (斜率优化 || 四边形优化)

在这里插入图片描述

链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480

题意:给定 n 个数,计算将它们分为 k 个子集的最小花费。花费为:每个子集最大值和最小值之差的平方和

思路:设dp[i][j]表示前 i 个数,分成 j 个子集的最小花费

  • 可以得到转移方程为: d p [ i ] [ j ] = ∑ k = 1 j − 1 d p [ k ] [ j − 1 ] + ( a [ i ] − a [ k + 1 ] ) × ( a [ i ] − a [ k + 1 ] ) dp[i][j]=\sum_{k=1}^{j-1}dp[k][j-1]+(a[i]-a[k+1])\times(a[i]-a[k+1]) dp[i][j]=k=1j1dp[k][j1]+(a[i]a[k+1])×(a[i]a[k+1])
  • 这是一个 O ( n 3 ) O(n^3) O(n3) 的复杂度。因此进行斜率优化
  • d p [ i ] [ j ] + 2 a [ i ] × a [ k + 1 ] = d p [ k ] [ j − 1 ] + a [ i ] × a [ i ] + a [ k + 1 ] × a [ k + 1 ] dp[i][j]+2a[i]\times a[k+1]=dp[k][j-1]+a[i]\times a[i]+a[k+1]\times a[k+1] dp[i][j]+2a[i]×a[k+1]=dp[k][j1]+a[i]×a[i]+a[k+1]×a[k+1]
  • k = 2 a [ i ] , x = a [ k + 1 ] , y = d p [ k ] [ j − 1 ] + a [ k + 1 ] × a [ k + 1 ] , b = d p [ i ] [ j ] − a [ i ] × a [ i ] k = 2a[i],x=a[k+1],y=dp[k][j-1]+a[k+1]\times a[k+1],b=dp[i][j]-a[i]\times a[i] k=2a[i]x=a[k+1],y=dp[k][j1]+a[k+1]×a[k+1],b=dp[i][j]a[i]×a[i]
  • 然后就维护一个下凸包, s l o p e ( q [ h ] , q [ h + 1 ] ) < = k slope(q[h],q[h+1])<=k slope(q[h],q[h+1])<=k 时,这个 q [ h ] q[h] q[h] 不是最优的, h++。当 s l o p e ( q [ t − 1 ] , q [ t ] ) > = s l o p e ( q [ t − 1 ] , i ) slope(q[t-1],q[t])>=slope(q[t-1],i) slope(q[t1],q[t])>=slope(q[t1],i) 时,此时的 q [ t ] q[t] q[t] 也不是最优的,t–。
  • 坑点:直接使用slope计算斜率会超时,x 和 y 出现负数时也容易出错,t从1开始表示第一个决策点为 P 0 P_0 P0
#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
const int maxn=10010,maxm=5010,inf=0x3f3f3f3f;

int tt,n,m,a[maxn];
int q[maxn],h,t;
int dp[maxn][maxm];

inline int Y(int k,int j){return dp[k][j-1]+a[k+1]*a[k+1];}
inline int X(int k){return a[k+1];}
inline int getX(int k1,int k2){return X(k2)-X(k1);}
inline int getY(int k1,int k2,int j){return Y(k2,j)-Y(k1,j);}
inline long double slope(int k1,int k2,int j)
{
    int y=Y(k2,j)-Y(k1,j);
    int x=X(k2)-X(k1);
    return (long double)y/x;
}

int main()
{
    scanf("%d",&tt);
    int Case=0;
    while(tt--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<=n;++i)
            for(int j=0;j<=m;++j)
                dp[i][j]=inf;
        for(int i=1;i<=n;++i) scanf("%d",&a[i]);
        sort(a+1,a+1+n);
        for(int i=1;i<=n;++i) dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
        for(int j=2;j<=m;++j)
        {
            h=1,t=1;
            for(int i=1;i<=n;++i)
            {
                while(h<t)
                {
                    int k1=q[h],k2=q[h+1];
                    int x=getX(k1,k2);
                    int y=getY(k1,k2,j);
                    if(y<=2*x*a[i]) ++h;
                    else break;
                }
                int k=q[h];
                dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
                while(h<t)
                {
                    int k1=q[t-1],k2=q[t];
                    int x1=getX(k1,k2);
                    int y1=getY(k1,k2,j);
                    int k3=q[t-1],k4=i;
                    int x2=getX(k3,k4);
                    int y2=getY(k3,k4,j);
                    if(y1*x2>=y2*x1) --t;
                    else break;
                }
                q[++t]=i;
            }
        }
        printf("Case %d: %d\n",++Case,dp[n][m]);
    }
    return 0;
}

超时代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
const int maxn=10010,maxm=5010,inf=0x3f3f3f3f;

int tt,n,m,a[maxn];
int q[maxn],h,t;
int dp[maxn][maxm];

inline int Y(int k,int j){return dp[k][j-1]+a[k+1]*a[k+1];}
inline int X(int k){return a[k+1];}
inline long double slope(int k1,int k2,int j)
{
    int y=Y(k2,j)-Y(k1,j);
    int x=X(k2)-X(k1);
    return (long double)y/x;
}

int main()
{
    scanf("%d",&tt);
    int Case=0;
    while(tt--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<=n;++i)
            for(int j=0;j<=m;++j)
                dp[i][j]=inf;
        for(int i=1;i<=n;++i) scanf("%d",&a[i]);
        sort(a+1,a+1+n);
        for(int i=1;i<=n;++i) dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
        for(int j=2;j<=m;++j)
        {
            h=1,t=1;
            for(int i=1;i<=n;++i)
            {
                while(h<t&&slope(q[h],q[h+1],j)<=2*a[i]) h++;
                int k=q[h];
                dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
                while(h<t&&slope(q[t-1],q[t],j)>=slope(q[t-1],i,j)) t--;
                q[++t]=i;
            }
        }
        printf("Case %d: %d\n",++Case,dp[n][m]);
    }
    return 0;
}

P3195 [HNOI2008]玩具装箱 (斜率优化)

在这里插入图片描述
链接:https://www.luogu.com.cn/problem/P3195

#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
const int maxn=5e4+10,inf=1e9+7;

ll n,l,dp[maxn],s[maxn];
int q[maxn],h=1,t=0;
ll Y(ll j){return dp[j]+(s[j]+l)*(s[j]+l);}
ll X(ll j){return s[j];}
long double slope(ll i,ll j)
{
    ll y=Y(i)-Y(j),x=X(i)-X(j);
    return (long double)y/x;
}
int main()
{
    scanf("%lld%lld",&n,&l);
    ++l;
    for(int i=1;i<=n;++i)
        scanf("%lld",&s[i]),s[i]+=s[i-1]+1;
    q[++t]=0;
    for(int i=1;i<=n;++i)
    {
        while(h<t&&slope(q[h],q[h+1])<=2*s[i]) h++;
        int j=q[h];
        dp[i]=dp[j]+(s[i]-s[j]-l)*(s[i]-s[j]-l);
        while(h<t&&slope(q[t-1],q[t])>=slope(q[t-1],i)) --t;
        q[++t]=i;
    }
    printf("%lld\n",dp[n]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]最小值,且满足b[i] = min{b[j] + (i-j)*k},其k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列。 2. 从第二个元素开始,我们需要将当元素加入队列,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列所有大于当元素的元素弹出,直到队列为空或者队列最后一个元素小于当元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当元素的斜率比较,如果当元素的斜率更小,则将当元素加入队列。 5. 最后队列的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示 $i$ 个木棒正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当要计算 $dp[i][j]$。首先,我们需要找到当点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包所有斜率比当点小的点移除,直到该点能够加入到凸包为止。其次,我们需要判断该点是否能够加入到凸包。如果不能加入到凸包,则直接舍弃。最后,我们需要保证凸包斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值