树链剖分习题 2(提高)

Distance on the tree (树剖)

链接:https://www.jisuanke.com/contest/2290/challenges
题意:给定一棵树每条边都带有权值,给定 m 个询问查询 u 和 v 的路径上权值小于等于 w 的边的个数
思路:先拆点将边权变为点权,可以离线来做。将点权小于当前询问权值的点,更新到线段树上,然后在查询路径上出现过的点的数量。(大于询问权值的点,还没更新上去)

#include <bits/stdc++.h>
#define ll long long
#define ls (rt<<1)
#define rs (rt<<1|1)
using namespace std;
const int maxn=2e5+10,mod=1e9+7;

int head[maxn],cnt;
struct Edge
{
    int nxt,to;
}edges[maxn<<1];
void add(int u,int v)
{
    edges[++cnt].nxt=head[u];
    edges[cnt].to=v;
    head[u]=cnt;
}
struct Opt
{
    int u,v,w,id;
    bool operator<(const Opt& b) const
    {
        return w<b.w;
    }
}e[maxn],opt[maxn];

int n,m;
int num[maxn],depth[maxn],fa[maxn],son[maxn];
int start[maxn],top[maxn],times;
int st[maxn<<2];
void dfs1(int u)
{
    num[u]=1;
    for(int i=head[u];i!=-1;i=edges[i].nxt)
    {
        int v=edges[i].to;
        if(v==fa[u]) continue;
        depth[v]=depth[u]+1;
        fa[v]=u;
        dfs1(v);
        num[u]+=num[v];
        if(num[v]>num[son[u]]) son[u]=v;
    }
}
void dfs2(int u,int x)
{
    start[u]=++times;
    top[u]=x;
    if(!son[u]) return;
    dfs2(son[u],x);
    for(int i=head[u];i!=-1;i=edges[i].nxt)
    {
        int v=edges[i].to;
        if(v==fa[u]||v==son[u]) continue;
        dfs2(v,v);
    }
}
void update(int rt,int p,int L,int R)
{
    if(L==R)
    {
        st[rt]++;
        return;
    }
    int mid=(L+R)>>1;
    if(p<=mid) update(ls,p,L,mid);
    if(p>mid) update(rs,p,mid+1,R);
    st[rt]=st[ls]+st[rs];
}
int query(int rt,int l,int r,int L,int R)
{
    if(l<=L&&R<=r) return st[rt];
    int mid=(L+R)>>1;
    int ans=0;
    if(l<=mid) ans+=query(ls,l,r,L,mid);
    if(r>mid) ans+=query(rs,l,r,mid+1,R);
    return ans;
}
int qPath(int u,int v)
{
    int ans=0;
    while(top[u]!=top[v])
    {
        if(depth[top[u]]<depth[top[v]]) swap(u,v);
        ans+=query(1,start[top[u]],start[u],1,n);
        u=fa[top[u]];
    }
    if(depth[u]>depth[v]) swap(u,v);
    ans+=query(1,start[u],start[v],1,n);
    return ans;
}

int ans[maxn];
int main()
{
    scanf("%d%d",&n,&m);
    cnt=-1,memset(head,-1,sizeof(head));
    int tot=n;
    int u,v,w;
    for(int i=1;i<=n-1;++i)
    {
        scanf("%d%d%d",&u,&v,&w);
        tot++;
        add(u,tot),add(tot,v);
        add(v,tot),add(tot,u);
        e[i]={u,v,w,tot};
    }
    for(int i=1;i<=m;++i)
    {
        scanf("%d%d%d",&u,&v,&w);
        opt[i]={u,v,w,i};
    }
    sort(e+1,e+1+n-1);
    sort(opt+1,opt+1+m);
    int nn=n-1;
    n=tot;
    dfs1(1);
    dfs2(1,1);
    int p=1;
    for(int i=1;i<=m;++i)
    {
        while(p<=nn&&e[p].w<=opt[i].w)
            update(1,start[e[p].id],1,n),p++;
        ans[opt[i].id]=qPath(opt[i].u,opt[i].v);
    }
    for(int i=1;i<=m;++i)
        printf("%d\n",ans[i]);
    return 0;
}

也可以用树剖+主席树来做,边权下推成点权。将按DFS序访问到的权值,更新到主席树上,对于每次询问 u,v,可以得到很多重链: t o p [ u ] top[u] top[u] u u u,它们对应的时间序为 s t a r t [ t o p [ u ] ] start[top[u]] start[top[u]] s t a r t [ u ] start[u] start[u] ,也就对应主席树两个版本 s t a r t [ t o p [ u ] ] − 1 start[top[u]]-1 start[top[u]]1 s t a r t [ u ] start[u] start[u],在这两个版本之间查询找 小于等于 k 的数即可。

  • 当 u 和 v 在同一条重链上时,需要注意的是,访问的是 s t a r t [ u ] start[u] start[u] s t a r t [ v ] start[v] start[v]这两个版本(假设 d e p t h [ u ] < d e p t h [ v ] depth[u]<depth[v] depth[u]<depth[v]),而不是 s t a r t [ u ] − 1 start[u]-1 start[u]1 s t a r t [ v ] start[v] start[v],因为 u 的点权来自它和父节点的边权,不在这条路径中。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;

int head[maxn],cnt;
struct Edge
{
    int nxt,to,w;
}edges[maxn<<1];
void add(int u,int v,int w)
{
    edges[++cnt].to=v;
    edges[cnt].nxt=head[u];
    edges[cnt].w=w;
    head[u]=cnt;
}
struct Opt
{
    int u,v,w;
}opt[maxn];

int n,m;
vector<int> allw;
int total,wt[maxn],ww[maxn];
int depth[maxn],num[maxn],fa[maxn],son[maxn];
int start[maxn],top[maxn],times;
int st[maxn*40],root[maxn],ls[maxn*40],rs[maxn*40],no;

void dfs1(int u)
{
    num[u]=1;
    for(int i=head[u];i!=-1;i=edges[i].nxt)
    {
        int v=edges[i].to,w=edges[i].w;
        if(v==fa[u]) continue;
        depth[v]=depth[u]+1;
        fa[v]=u;
        ww[v]=w;
        dfs1(v);
        num[u]+=num[v];
        if(num[v]>num[son[u]]) son[u]=v;
    }
}
void dfs2(int u,int x)
{
    start[u]=++times;
    wt[times]=ww[u];
    top[u]=x;
    if(!son[u]) return;
    dfs2(son[u],x);
    for(int i=head[u];i!=-1;i=edges[i].nxt)
    {
        int v=edges[i].to;
        if(v==fa[u]||v==son[u]) continue;
        dfs2(v,v);
    }
}
int build(int L,int R)
{
    int rt=++no;
    if(L==R) return rt;
    int mid=(L+R)>>1;
    ls[rt]=build(L,mid);
    rs[rt]=build(mid+1,R);
}
int update(int pre,int L,int R,int p)
{
    int rt=++no;
    st[rt]=st[pre]+1;
    ls[rt]=ls[pre];
    rs[rt]=rs[pre];
    if(L==R) return rt;
    int mid=(L+R)>>1;
    if(p<=mid) ls[rt]=update(ls[pre],L,mid,p);
    if(p>mid) rs[rt]=update(rs[pre],mid+1,R,p);
    return rt;
}
int query(int pre,int now,int l,int r,int L,int R)
{
    if(l<=L&&R<=r)
        return st[now]-st[pre];
    int mid=(L+R)>>1;
    int ans=0;
    if(l<=mid) ans+=query(ls[pre],ls[now],l,r,L,mid);
    if(r>mid) ans+=query(rs[pre],rs[now],l,r,mid+1,R);
    return ans;
}

int qPath(int u,int v,int p)
{
    int ans=0;
    while(top[u]!=top[v])
    {
        if(depth[top[u]]<depth[top[v]]) swap(u,v);
        ans+=query(root[start[top[u]]-1],root[start[u]],1,p,1,total);
        u=fa[top[u]];
    }
    if(depth[u]>depth[v]) swap(u,v);
    ans+=query(root[start[u]],root[start[v]],1,p,1,total);
    return ans;
}

int main()
{
    memset(head,-1,sizeof(head));
    cnt=0;
    scanf("%d%d",&n,&m);
    int u,v,w;
    for(int i=1;i<=n-1;++i)
    {
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w),add(v,u,w);
        allw.push_back(w);
    }
    for(int i=1;i<=m;++i)
    {
        scanf("%d%d%d",&u,&v,&w);
        opt[i]={u,v,w};
        allw.push_back(w);
    }
    sort(allw.begin(),allw.end());
    allw.resize(unique(allw.begin(),allw.end())-allw.begin());
    dfs1(1);
    dfs2(1,1);
    total=allw.size();
    root[0]=build(1,total);
            for(int i=1;i<=n;++i)
    {
        int p=lower_bound(allw.begin(),allw.end(),wt[i])-allw.begin()+1;
        root[i]=update(root[i-1],1,total,p);
        /*
		cout<<"p: "<<p<<"\n";
        for(int j=1;j<=total;++j)
            printf("%d ",query(root[0],root[i],j,j,1,total));
        puts("");
        */
    }
    for(int i=1;i<=m;++i)
    {
        int p=lower_bound(allw.begin(),allw.end(),opt[i].w)-allw.begin()+1;
        printf("%d\n",qPath(opt[i].u,opt[i].v,p));
    }
    return 0;
}
/*
3 2
1 3 2
1 2 7
2 3 4
2 3 7
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值