The Poisson distribution

The Poisson distribution is a probability distribution that describes the likelihood of a given number of events occurring within a fixed interval of time or space, under certain conditions. It is often used to model events that happen independently of each other at a constant average rate.

在这里插入图片描述

Physical Significance of the Poisson Distribution:

Rare Event Modeling:

The Poisson distribution is ideal for modeling rare or infrequent events. For instance, it can describe the number of phone calls received at a call center in a given minute, the number of accidents at a specific intersection per month, or the number of mutations in a strand of DNA.

Applications in Natural Phenomena:

Radioactive decay: The Poisson distribution can be used to model the number of decays of radioactive particles in a fixed time interval.
Photon counting: In quantum mechanics, the distribution describes the number of photons detected by a sensor in a certain time period when photons arrive independently of each other.

Describes Events that are Independent and Random:

The Poisson distribution assumes that events occur randomly and independently. This means the occurrence of one event does not affect the occurrence of another. For example, the arrival of buses at a stop may be modeled by the Poisson distribution if they arrive randomly and independently.

Constant Average Rate of Occurrence:

The distribution assumes that events happen at a constant average rate (denoted by λ, the rate parameter). For example, if a bookstore sells an average of 3 books per hour, the number of sales per hour can be modeled by a Poisson distribution with λ = 3.
Approximation of Binomial for Large n and Small p:

The Poisson distribution is a good approximation of the binomial distribution when the number of trials (n) is large, and the probability of success § is small. This makes it particularly useful when the exact binomial probability calculation is complex or computationally intensive.

Example in Physics:

In radioactive decay, particles decay randomly but at a constant average rate. If you measure how many decay events occur over a short time interval, this process can be modeled by a Poisson distribution. The parameter λ in this case represents the expected number of decays within that interval.

Formula:

For a Poisson distribution with mean rate λ, the probability of observing exactly
𝑘
k events in a given time or space interval is:

P(k;λ)=λke−λk! P(k; \lambda) = \frac{ \lambda^k e^{-\lambda}}{k!} P(k;λ)=k!λkeλ

Where:

kkk is the number of events,

λ is the average number of events,

eee is Euler’s number (approximately 2.71828),

kkk! is the factorial of kkk

Example1 :

Radioactive

A radioactive substance has an average decay rate of 2 decays per minute. The number of decays in a given time interval follows a Poisson distribution.

  1. What is the probability that exactly 3 decays occur in a one-minute interval?
  2. What is the probability that no decays occur in a 30-second interval?

Solution Outline:

Part 1: Poisson Distribution Formula
The probability of observing exactly kkk events in a fixed interval for a Poisson process is given by the formula:

P(k;λ)=λke−λk! P(k; \lambda) = \frac{ \lambda^k e^{-\lambda}}{k!} P(k;λ)=k!

【ACDC微电网的能源管理策略】微电网仿真模型包括光伏发电机、燃料电池系统、超级电容器和直流侧的电池,包括电压源变换器(VSC),用于将微电网的直流侧与交流侧相连接Simulink仿真实现内容概要:本文介绍了一个用于ACDC微电网能源管理策略的Simulink仿真模型,该模型集成了光伏发电机、燃料电池系统、超级电容器和直流侧电池等多种分布式能源,并通过电压源变换器(VSC)实现微电网直流侧与交流侧的连接。文档重点展示了微电网中多能源协调控制与能量管理的仿真方法,涵盖系统建模、能量调度策略设计及动态响应分析,旨在提高微电网运行的稳定性与能效。此外,文中还提及多种相关电力系统仿真案例,突出其在科研与工程实践中的应用价值。; 适合人群:具备一定电力系统、新能源技术及Simulink仿真基础的科研人员、电气工程专业研究生及从事微电网、分布式能源系统设计的工程技术人员。; 使用场景及目标:①用于微电网多能源系统建模与仿真,掌握VSC在交直流互联中的作用;②研究微电网能量管理策略,优化能源调度与系统稳定性;③作为科研项目或毕业设计的技术参考,支撑高水平论文复现与创新研究。; 阅读建议:建议结合Simulink实际操作,逐步构建模型并调试参数,重点关注各能源单元的控制逻辑与VSC的动态响应特性,同时可参考文中提到的优化算法与控制策略进行扩展研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

0010000100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值