The Poisson distribution is a probability distribution that describes the likelihood of a given number of events occurring within a fixed interval of time or space, under certain conditions. It is often used to model events that happen independently of each other at a constant average rate.

Physical Significance of the Poisson Distribution:
Rare Event Modeling:
The Poisson distribution is ideal for modeling rare or infrequent events. For instance, it can describe the number of phone calls received at a call center in a given minute, the number of accidents at a specific intersection per month, or the number of mutations in a strand of DNA.
Applications in Natural Phenomena:
Radioactive decay: The Poisson distribution can be used to model the number of decays of radioactive particles in a fixed time interval.
Photon counting: In quantum mechanics, the distribution describes the number of photons detected by a sensor in a certain time period when photons arrive independently of each other.
Describes Events that are Independent and Random:
The Poisson distribution assumes that events occur randomly and independently. This means the occurrence of one event does not affect the occurrence of another. For example, the arrival of buses at a stop may be modeled by the Poisson distribution if they arrive randomly and independently.
Constant Average Rate of Occurrence:
The distribution assumes that events happen at a constant average rate (denoted by λ, the rate parameter). For example, if a bookstore sells an average of 3 books per hour, the number of sales per hour can be modeled by a Poisson distribution with λ = 3.
Approximation of Binomial for Large n and Small p:
The Poisson distribution is a good approximation of the binomial distribution when the number of trials (n) is large, and the probability of success § is small. This makes it particularly useful when the exact binomial probability calculation is complex or computationally intensive.
Example in Physics:
In radioactive decay, particles decay randomly but at a constant average rate. If you measure how many decay events occur over a short time interval, this process can be modeled by a Poisson distribution. The parameter λ in this case represents the expected number of decays within that interval.
Formula:
For a Poisson distribution with mean rate λ, the probability of observing exactly
𝑘
k events in a given time or space interval is:
P(k;λ)=λke−λk! P(k; \lambda) = \frac{ \lambda^k e^{-\lambda}}{k!} P(k;λ)=k!λke−λ
Where:
kkk is the number of events,
λ is the average number of events,
eee is Euler’s number (approximately 2.71828),
kkk! is the factorial of kkk
Example1 :
Radioactive
A radioactive substance has an average decay rate of 2 decays per minute. The number of decays in a given time interval follows a Poisson distribution.
- What is the probability that exactly 3 decays occur in a one-minute interval?
- What is the probability that no decays occur in a 30-second interval?
Solution Outline:
Part 1: Poisson Distribution Formula
The probability of observing exactly kkk events in a fixed interval for a Poisson process is given by the formula:
P(k;λ)=λke−λk! P(k; \lambda) = \frac{ \lambda^k e^{-\lambda}}{k!} P(k;λ)=k!

最低0.47元/天 解锁文章
307

被折叠的 条评论
为什么被折叠?



