回文串/回文序列系列题:647回文子串个数/ 5最长回文子串/ 516最长回文子序列

647. 回文子串:计数字符串中回文子串的个数

1、中心延展法:中心可以取为字母,或两个字母的间隙。

class Solution {
public:
    int countSubstrings(string s) {
        const int n = s.length();
        int ans = 0;
        for(int i = 0; i < 2 * n - 1; i++) {
            //中心点i一共2n-1个, 偶数序号代表某一个字母为中心(left==right==center),奇数编号代表某一个间隙为中心
            int left = i / 2;
            int right = left + i % 2;

            while(left >= 0 && right < n && s[left] == s[right]) {
                ans++;
                left--;
                right++;
            }
        }
        return ans;
    }
};

2、DP方法:dp填充顺序为逐条竖线填充,只填充上三角区域和对角线,因为区间要求 i <= j

class Solution {
public:
    int countSubstrings(string s) {
        const int n = s.length();
        if(n <= 1) return n;

        vector<vector<bool>> dp(n, vector<bool>(n, 0));
        int sum = 0;
        //dp矩阵,逐列填充
        //区间[i, j]满足i<=j才行,j为外层
        for(int j = 0; j < n; j++) {
            for(int i = 0; i <= j; i++) {
                if(s[i]==s[j] && (j-i<2 || dp[i+1][j-1])) {
                    dp[i][j] = true;
                    sum += 1;
                }
            }
        }
        return sum;
    }
};

5. 最长回文子串

和上一题类似,用DP或者中心延展法均可

class Solution {
public:
    string longestPalindrome(string s) {
        
        const int n = s.length();
        //bool dp[n][n]; //初始全为false
        vector<vector<bool>> dp(n, vector<bool>(n, false));
        int maxLen = 0, start = 0;

        for(int j = 0; j < n; j++) {
            for(int i = 0; i <= j; i++) {
                if(s[i]==s[j] && (j-i<2 || dp[i+1][j-1])) {
                    dp[i][j] = true;
                    //maxLen = max(maxLen, j-i+1);
                    if(j-i+1 > maxLen) {
                        maxLen = j - i + 1;
                        start = i;
                    }
                }
            }
        }
        return s.substr(start, maxLen);
    }
};
class Solution {
public:
    string longestPalindrome(string s) {
        
        const int n = s.length();
        int maxLen = 0, start = 0;
        for(int i = 0; i < 2*n-1; i++) {
            int left = i / 2;
            int right = left + i % 2;
            while(left >= 0 && right < n && s[left]==s[right]) {
                left--;
                right++;
            }
            if(maxLen < right - left - 1) {
                maxLen = right - left - 1;
                start = left + 1;
            }
        }
        return s.substr(start, maxLen);
    }
};

516. 最长回文子序列

乍一看比较难,但是用DP的方法解很简洁

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        const int n = s.length();
        vector<vector<int>> dp(n, vector<int>(n, 0));

        for(int i = n-1; i >= 0; i--) {
            dp[i][i] = 1;
            for(int j = i+1; j < n; j++) {
                if(s[i] == s[j]) {
                    dp[i][j] = 2 + dp[i+1][j-1];
                }
                else {
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
                }
            }
        }
        return dp[0][n-1];
    }
};

 

发布了116 篇原创文章 · 获赞 11 · 访问量 3251
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览