igl或者libigl库的使用

libigl是一个很方便的几何网格处理库

可以计算出Gaussian Curvature、Principle Curvature等基础信息。 

python 基础代码如下:

from scipy.sparse.linalg import spsolve
import igl
import os
import numpy as np
import igl
import scipy as sp
from meshplot import plot, subplot, interact
import meshplot
meshplot.jupyter()
meshplot.offline()

v, f = igl.read_triangle_mesh("data/******.obj")

l = igl.cotmatrix(v, f)

n = igl.per_vertex_normals(v, f)*0.5+0.5
c = np.linalg.norm(n, axis=1)


vs = [v]
cs = [c]
for i in range(10):
    m = igl.massmatrix(v, f, igl.MASSMATRIX_TYPE_BARYCENTRIC)
    s = (m - 0.001 * l)
    b = m.dot(v)
    v = spsolve(s, m.dot(v))
    n = igl.per_vertex_normals(v, f)*0.5+0.5
    c = np.linalg.norm(n, axis=1)
    vs.append(v)
    cs.append(c)

# plot(v, f)
# plot(vs[0], f, c, shading={"wireframe": False}, s=[1, 4, 0])
p = subplot(vs[0], f, c, shading={"wireframe": False}, s=[1, 4, 0])
subplot(vs[3], f, c, shading={"wireframe": False}, s=[1, 4, 1], data=p)
subplot(vs[6], f, c, shading={"wireframe": False}, s=[1, 4, 2], data=p)
subplot(vs[9], f, c, shading={"wireframe": False}, s=[1, 4, 3], data=p)
p.save("subplot.html")
# @interact(level=(0, 9))
# def mcf(level=0):
#     p.update_object(vertices=vs[level], colors=cs[level])
k = igl.gaussian_curvature(v, f)
p = plot(v, f, k, return_plot=True)
p.save("gaussian_curvature.html")

m = igl.massmatrix(v, f, igl.MASSMATRIX_TYPE_VORONOI)
minv = sp.sparse.diags(1 / m.diagonal())
kn = minv.dot(k)
p = plot(v, f, kn, return_plot=True)
p.save("igl.massmatrix2222.html")


l = igl.cotmatrix(v, f)
m = igl.massmatrix(v, f, igl.MASSMATRIX_TYPE_VORONOI)
minv = sp.sparse.diags(1 / m.diagonal())
hn = -minv.dot(l.dot(v))
h = np.linalg.norm(hn, axis=1)
p = plot(v, f, h, return_plot=True)
p.save("igl.massmatrix.html")

v1, v2, k1, k2 = igl.principal_curvature(v, f)
h2 = 0.5 * (k1 + k2)
p = plot(v, f, h2, shading={"wireframe": False}, return_plot=True)
p.save("principal_curvature.html")

avg = igl.avg_edge_length(v, f) / 2.0
p.add_lines(v + v1 * avg, v - v1 * avg, shading={"line_color": "red"})
p.add_lines(v + v2 * avg, v - v2 * avg, shading={"line_color": "green"})
p.save("principal_curvature_line.html")

## Select a vertex from which the distances should be calculated
vs = np.array([0])
##All vertices are the targets
vt = np.arange(v.shape[0])
d = igl.exact_geodesic(v, f, vs, vt)#, fs, ft)
strip_size = 0.02
##The function should be 1 on each integer coordinate
c = np.abs(np.sin((d / strip_size * np.pi)))
p = plot(v, f, c, shading={"wireframe": False}, return_plot=True)
p.save("exact_geodesic.html")

import pdb
pdb.set_trace()

<think>好的,用户想用libigl计算曲面的曲率,需要示例代码或文档说明。首先,我得回忆一下libigl的相关功能。libigl确实有计算曲率的函数,比如principal_curvature,这应该能帮到用户。 接下来,我需要确定用户的问题是否需要详细步骤,比如数据准备、函数调用和结果处理。可能用户是刚开始接触libigl,所以示例代码的结构要清晰,注释也要详细。记得要包含必要的头文件,比如igl/principal_curvature.h,并且说明依赖项,比如Eigen。 另外,用户可能想知道如何安装libigl或者如何处理输入数据,比如从OBJ文件读取网格。不过用户的问题里没有提到安装,所以可能不需要这部分,但可以建议参考官方文档。同时,示例代码中的V和F矩阵需要正确初始化,可能需要用igl::read_triangle_mesh来读取网格文件。 还要注意函数principal_curvature的参数,PV1和PV2是主曲率方向,而K1和K2是主曲率值。用户可能需要这些数据来进行后续的可视化或分析,所以代码里应该包含如何访问这些值。 另外,文档说明的部分需要给出官方文档的链接,方便用户深入查看。可能用户会遇到编译问题,所以提醒使用正确的编译设置和依赖项安装,比如OpenGL和AntTweakBar。 最后,生成的相关问题要围绕曲率计算,比如不同曲率类型的区别、可视化方法以及常见错误处理。这些能帮助用户进一步解决问题,覆盖可能遇到的后续疑问。</think>在libigl中计算曲面曲率主要通过$principal\_curvature$函数实现,其数学基础基于微分几何中的Weingarten映射[^1]。以下是具体实现步骤: ### 实现步骤 1. **数据准备**:输入三角网格的顶点矩阵$V \in \mathbb{R}^{n\times3}$和面片矩阵$F \in \mathbb{Z}^{m\times3}$ 2. **函数调用**: ```cpp #include <igl/principal_curvature.h> Eigen::MatrixXd V; // 顶点坐标 Eigen::MatrixXi F; // 面片索引 Eigen::MatrixXd PD1, PD2; // 主曲率方向 Eigen::VectorXd PV1, PV2; // 主曲率值 igl::principal_curvature(V, F, PD1, PD2, PV1, PV2); ``` 3. **结果解析**: - $PV1$包含最大主曲率$k_1$ - $PV2$包含最小主曲率$k_2$ - 高斯曲率$K = k_1 \cdot k_2$ - 平均曲率$H = \frac{k_1 + k_2}{2}$ ### 文档说明 官方文档指出该算法基于: $$ \delta k_i = \frac{3\sum_{j}(\nabla A_j \cdot e_j)}{\sum_{j}\|e_j\|^2} $$ 其中$e_j$为边向量,$\nabla A_j$为面积梯度[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值