NR 物理层编码 - slide5 循环码 电路结构和译码

参考:

   12.循环码-电路结构和译码_哔哩哔哩_bilibili

前言:

    前面讲了软件上面如何实现,这篇主要结合硬件来加深循环码的理解。

循环码编码译码电路主要由除法器组成,这里重点讲一下除法器,通过除法器可以

得到余数。


目录 :

   1: 除法器

   2:   循环码译码原理


一  除法器

      已知除数多现式

     g(x)=g_0+g_1x+g_2x^2+...+g_rx^r

    相应的除法电路为

   

   D: 移位寄存器

   余数p(x) D_1+xD_2+x^2D_3+...+x^{r-1}D_{r}

   商 Q(x)

  例:

   除数 g(x)=x^2+1

   除数F(x)=x^4+x^2+1

   商Q(x)=x^2

  余数 p(x)=1

主要流程

       初始化所有的寄存器状态为0(0+a=a)

       每个时钟周期,

               移位,反馈  

    r=N-k=2

电路图 

  

  第一个时钟周期:

   被除数输入1,移位寄存器右移1位

   D=[10] Q=0

  反馈

    D_1=D_1+Q=1+0

    此刻寄存器位【10】

  依次类推

 p=[1,0],p(x)=1

 Q=[00100],Q(x)=x^2

   

    反馈就是利用移出的那位,跟有反馈的移位寄存器 做模二加法,上图只有g1

如果是0,保持不变,1取反。

   

  


二 循环码译码原理

     S(x) \equiv R(x)\begin{pmatrix} mod \end{pmatrix} g(x)

             =(c(x)+E(x))(mod)g(x)

              =E(x)(mod)g(x)

   由伴随式确定错误图样

         S(x)\rightarrow E(x)(查表)

   纠错操作

          c(x)=R(x)+E(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值