无线感知会议系列【17】Chronos-1

前言:

      卡内基梅隆大学  和 麻省理工大学的一篇Paper

      论文《Decimeter-Level Localization with a SingleWiFi Access Point》

       这篇论文跟其它论文格式不太一样,很多论文先些去噪方案,然后再将特征匹配。

这篇是先将特征匹配,再讲去噪。

        我们提出了Chronos系统,该系统能够使单个WiFi接入点将客户端定位到几十厘米范围内。这样的系统能够为通常只有一个接入点的家庭和小型企业带来室内定位功能。

       Chronos的核心技术是一种新型算法,该算法能够使用普通WiFi网卡计算亚纳秒级的飞行时间。通过将飞行时间与光速相乘,多输入多输出(MIMO)接入点可以计算出其每个天线与客户端之间的距离,从而实现定位。我们在普通WiFi网卡上的实现表明,Chronos的精度可与使用四个或五个接入点的最先进的定位系统相媲美

    简单介绍一下方案

    

主要创新点


目录:

 

  1. 引言
  2. 概述
  3. 测量飞行时间
  4. 消除数据包检测延迟   PPD(Packet Detection Delay)噪声
  5. 对抗多径效应
  6. 相位偏移校正  PPO(PLL Phase Offset) 噪声, CFO(Carrier Frequency Offset)噪声
  7. 计算距离和位置
  8. 实现
  9. 结果
  10. 应用
  11. 相关工作
  12. 结论

  


一     引言

        近年来,利用无线信号进行室内定位的技术取得了显著进展[48, 28]。最先进的系统甚至在使用普通WiFi芯片组的情况下,也能实现几十厘米的精度[30, 32, 18]。然而,现有的方案主要针对的是企业网络,其中多个WiFi接入点可以综合各自的信息并进行协作来定位用户。然而,当今绝大多数家庭和小型企业只有一个WiFi接入点。因此,这一大批无线网络用户无法享受到精确室内定位技术所带来的便利。

      开发一种能够利用单个WiFi接入点来定位用户和物体的技术,将能够推动一系列重要应用的发展:  商业闭环

  (i) 智能家居居住情况:

       在智能家居愿景中,室内定位可以发挥至关重要的作用,其中像NEST这样的支持WiFi的家庭自动化系统正越来越受欢迎。精确定位解决了家庭自动化领域长期存在的问题:可靠的居住检测。基于WiFi的定位可以追踪每个房间中用户的数量(通过他们的手机或可穿戴设备),并据此调节加热和照明。在了解这些居住者的身份后,还可以根据用户的偏好来个性化调节加热和照明等级。

    (ii)WiFi地理围栏:

 除了家庭环境外,室内定位技术还可以为使用单个接入点提供免费WiFi以吸引顾客的小型企业带来好处。但随着网络日益拥堵,企业主希望限制WiFi连接,仅供自己的顾客使用,因为美国有32%的用户承认曾访问过他们服务场所之外的开放WiFi网络。然而,用密码保护这些网络对用户(连接这些网络的用户)和企业主(必须频繁更改密码的企业主)来说都不方便。而使用单个接入点的室内定位技术为这一问题提供了自然的解决方案,因为它可以根据用户的位置自动进行身份验证。

((iii)) 设备到设备定位:

      更广泛地讲,使两个WiFi节点能够在没有额外基础设施支持的情况下相互定位,对WiFi网络可能根本不存在的地区具有重要意义。想象一下,与朋友或家人在WiFi不如美国普及的国家旅行,但仍然能够在商场、博物馆或火车站中找到彼此,而无需连接到WiFi基础设施。

我们的目标是设计一个系统:

        使单个WiFi节点(例如接入点)能够定位另一个节点,而无需额外的基础设施支持。此外,我们希望这个设计能在普通的WiFi网络接口控制器(NIC)上运行,并且不需要任何额外的传感器(如摄像头、加速度计等)。在设计上述系统时,我们首先需要探究为什么过去的系统需要多个接入点。基于射频(RF)的定位最直接的方法是time-of-flight(即传播时间),然后将其乘以光速以获得距离。然而,过去基于WiFi的定位方案无法测量绝对的飞行时间。它们只能测量接收器天线之间飞行时间的差异。这种时间差异使得这些系统能够推断出相对于接收器的信号源方向,即到达角(AoA)。但它们并不能提供信号源与接收器之间的距离。因此,过去的工作需要通过多个接入点得到的信号源方向进行交叉定位。事实上,过去的方案通常需要使用四个或五个接入点才能达到几十厘米的精度[30, 32, 48, 50]。即使是最近少数使用单个WiFi接入点进行定位的方案[35, 53],也要求用户走到多个位置来模拟多个接入点的存在。然后,它们结合这些位置的信号测量和加速度计读数来推断用户的轨迹。

          然而,也存在一些非WiFi系统能够准确测量绝对飞行时间,因此可以使用单个接收器进行定位。这些系统使用专门设计的超宽带无线电,其频带宽度跨越多个千兆赫兹由于时间分辨率与无线电带宽成反比,这些设备能够以亚纳秒级的精度测量飞行时间,因此可以将物体定位在几十厘米的范围内。相比之下,使用20MHz或40MHz的WiFi无线电直接测量时间会导致7到15米的误差[30]。

          基于上述分析,我们研究了WiFi无线电是否能模拟宽带多千兆赫兹无线电,以实现定位功能。我们的研究催生了Chronos室内定位系统,该系统能够使一对WiFi设备相互定位。它运行在普通的WiFi网卡上,无需任何外部传感器(如加速度计或摄像头)。

Chronos的工作原理:

     让WiFi网卡模拟一个超宽带无线电。特别是,虽然每个WiFi频段的宽度只有几十兆赫兹,但存在许多这样的频段,它们组合在一起就形成了一个非常宽的带宽。因此,Chronos在多个WiFi频段上传输数据包,并将它们的信息组合在一起,从而模拟出宽带无线电的效果。

        然而,使用在不同频段上传输的数据包来模拟宽带无线电并不容易。要将这些数据包上的测量结果组合起来,Chronos需要克服三个挑战:

     

1  解决相位偏移问题

          首先,为了模拟宽带无线电,Chronos需要将在不同WiFi频段、不同时间点传输的多个数据包捕获的信道状态信息(CSI)拼接起来。然而,在WiFi频段之间跳频的行为本身会在硬件重置到每个新频率(即锁相环锁定)时引入一个随机的初始相位偏移。因此,尽管存在这些随机的相位偏移,Chronos也必须恢复飞行时间以进行定位。

        CFO  SFO

2   消除数据包检测延迟

      其次,对任何数据包的飞行时间进行测量都必然包括检测其存在性的延迟。然而,不同的数据包会经历不同的随机检测延迟。更糟糕的是,这种数据包检测延迟通常比飞行时间高出几个数量级。在室内WiFi环境中,飞行时间只有几纳秒,而数据包检测延迟则可能长达数百纳秒[38]。Chronos必须从这种检测延迟中分离出飞行时间。

      采样时间的影响 SignFi

3   对抗多径效应

        最后,在室内环境中,信号不会经历单一的飞行时间,而是会经历飞行时间扩展。这是因为室内环境中的射频信号会在墙壁和家具上反射,并沿着多条路径到达接收器。因此,接收器会获得信号的多个副本,每个副本都经历了不同的飞行时间。为了进行精确定位,Chronos必须从所有其他路径中分离出直接路径的飞行时间。

本文的主体部分解释了Chronos如何克服这些挑战,计算绝对飞行时间,并使用单个接入点实现定位.• Chronos在计算飞行时间时,在视线范围内(line-of-sight)的中位误差为0.47纳秒,在非视线范围内(non-line-of-sight)的中位误差为0.69纳秒。这分别对应着中位距离误差14.1厘米和20.7厘米。• Chronos能够使一个WiFi设备(例如接入点AP)以中位误差65厘米(视线范围内)和98厘米(非视线范围内)定位另一个设备。

为了展示Chronos的能力,我们将其应用于三个场景:

智能家居居住情况监测

      Chronos可以使用单个接入点来追踪家中不同房间的居住人数,这是智能家居(可根据居住情况自动调节供暖和照明)的一项关键基础功能。在一个有4名居住者的两居室公寓中进行的实验表明,Chronos能够准确地将家中的居民定位到他们所在的正确房间,准确率为94.3%。

WiFi地理围栏

    拥有单个接入点的小型企业可以使用Chronos来限制其设施内客户的WiFi连接。在一家咖啡店的实验中,Chronos的准确率达到了97%。

个人无人机

     Chronos能够定位一对用户设备,这可以直接惠及个人机器人(如娱乐无人机)的导航系统。通过追踪用户的手持设备,Chronos使个人无人机能够保持与用户的安全距离。我们在AscTec Quadrotor无人机上进行的实验表明,它相对于用户设备保持了所需的距离,均方根误差为4.2厘米。

 贡献

     据我们所知,Chronos是首个使配备商用WiFi网卡的节点能够在没有任何第三方支持(无论是其他WiFi节点还是外部传感器,如加速度计)的情况下,以数十厘米的精度定位另一个节点的系统。此外,Chronos还首次提出了在商用WiFi网卡上以亚纳秒级精度测量绝对飞行时间的算法。

       

      


二 . 概述

             

             本文其余部分的组织结构简述如下。Chronos通过计算两个WiFi设备之间信号的飞行时间,实现在没有第三方支持的情况下对这两个设备进行定位。第3节描述了我们通过整合多个WiFi频段的信息来计算飞行时间的方法。随后,我们介绍了Chronos面临的挑战及其应对策略。具体来说:

• 1  消除数据包检测延迟(Eliminating Packet Detection Delay)

     首先,Chronos将飞行时间与数据包检测延迟分离开来,因为后者与发射器和接收器之间的距离无关(见第4节)。

2   消除多径效应(Combating Multipath)

Chronos将无线信号直接路径的飞行时间与所有其他路径的飞行时间分离开来(见第5节)。

3  解决相位偏移(Resolving Phase Offsets)

    最后,Chronos消除了WiFi接收器在不同频段之间切换时引入的任意相位偏移(见第6节)。


 三   MEASURING TIME OF FLIGHT

在本节中,我们描述了Chronos如何在没有第三方支持的情况下,测量一对Wi-Fi设备之间信号的精确  time-of-flight。本节的其余部分假设信号从发射器沿单一路径传播到接收器,且不存在检测延迟或相位偏移。我们将在第4节、第5节和第6节中分别讨论由数据包检测延迟、多径效应和相位偏移引起的挑战。

Chronos的方法基于以下观察:

       从概念上讲,如果我们的接收器具有非常宽的带宽,那么它就可以轻松地从单个接收设备以精细的分辨率测量time-of-flight(因为时间和带宽是反比关系,Nyquist定理)。然而,遗憾的是,当今的Wi-Fi设备并不具备如此宽的带宽。但还有一个机会:

     Wi-Fi设备已知跨越了围绕2.4 GHz和5 GHz分散的多个频段。这些频段加起来几乎覆盖了1 GHz的带宽。通过让发射器和接收器在这些不同的频段之间跳频,我们可以收集到无线信道的许多不同测量结果。然后,我们可以将这些测量结果“拼接”起来,计算出time-of-flight,就好像我们拥有了一个超宽带无线电一样

但是:许多Wi-Fi频段是不连续的、间隔不均等的,甚至相隔多个GHz(见图1)。Chronos通过利用飞行时间与无线信道相位之间的关系来克服这些问题。具体来说,从基础电磁学我们知道,信号随时间传播时,会根据其频率积累相应的相位。信号的频率越高,相位积累的速度就越快。为了说明这一点,让我们考虑一个发射器向接收器发送信号的场景。

 则无线信道h可以表示为:

  

其中:

  1.       a 表示信号幅度
  2.       f  表示频率
  3.       τ  表示飞行时间。
  4.        该信道的相位与飞行时间(time-of-flight)的关系为:

   ​​​​​​​

   

请注意,上述方程直接依赖于信号的飞行时间,因此,我们可以使用它来测量飞行时间τ,公式为:

 ​​​​​​​

上述方程给出了飞行时间的模除以1/f(周期)。

因此,对于2.4 GHz的WiFi频率,我们只能获得飞行时间的模除以0.4纳秒。换句话说,飞行时间分别为0.1纳秒、0.5纳秒、0.9纳秒、1.3纳秒等的发射器,在无线信道中都会产生相同的相位。从物理距离的角度来看,这意味着距离相差12厘米倍数(例如3厘米、15厘米、27厘米、39厘米等)的发射器,都会导致信道相位相同。因此,在单个频段上,无法根据相位来区分这些发射器。(之前有论文通过不同子载波上面的相位差来捕捉)

# -*- coding: utf-8 -*-
"""
Created on Mon Dec  9 11:09:43 2024

@author: chengxf2
"""

def calcPeriod():
    #aWiFi frequency of 2.4 GHz, 10^3M, 10^6k,10^9
    freqList  = [2.4, 5]
    #1s = 10^3ms   10^6us  10^9  ns
    for  freq in freqList:
        preiod = 1/freq
        print("\n 频率: %3.2f 子载波周期: %3.1f ns"%(freq, preiod))
    
    #0.1纳秒、0.5纳秒、0.9纳秒、1.3纳秒等的发射器 = 10^{-9} s
    time_of_fligt =[0.1,0.5,0.9,1.3]
    #3*10^8 m/s = 30 10^9 cm/s
    v = 30
    for t in time_of_fligt:
         d= v*t
         print("\n time_of_flight %3.2f ns  移动距离: %4.2f cm "%(t,d))
        
calcPeriod()
    

 确实,这正是Chronos需要在多个频段{f1, ..., fn}之间跳频并测量相应无线信道{h1, ..., hn}的原因。这样得到的是一个方程组,每个频段对应一个方程,这些方程测量的是飞行时间对不同值的模:

     

请注意,上述方程组具有著名的]的形式。这样的方程可以使用标准的模算术算法轻松求解,即使在存在噪声的情况下[Remainder Theorem: Applications in Computing,Coding, Cryptography. 1996.]也如此,并且在先前的工作中已在距离估计的上下文中使用过([44, 43])。该定理指出,这些方程的解在模一个更大的数——即{\frac{1}{f_1},\frac{1}{f_2},...\frac{1}{f_n}的最小公倍数(LCM Least Common Multiple)时唯一。

      为了说明上述方程组是如何工作的,我们考虑一个位于0.6米处的源,其飞行时间为2纳秒。假设接收器在五个候选的WiFi频段上测量来自该源的信道相位,如图2所示。我们注意到,在这些信道上的每一个测量都会产生一个关于τ的唯一方程,类似于方程4。每个方程都有多个解,在图2中以彩色竖线表示。然而,只有正确的τ解才能满足所有方程。(最小公倍数)因此,通过选择满足最多方程(即图2中对齐线最多的τ)的解,我们可以恢复出真实的飞行时间2纳秒。

    https://miniwebtool.com/zh-tw/least-common-multiple-calculator/

     请注意,我们基于中国剩余定理的解决方案并不假设频率集合{f_1,f_2,...f_n}是否等间隔。实际上,不等间隔的频率使它们更不可能有公共因子从而增大了最小公倍数(LCM)。因此,与直觉相反,WiFi中分散且不等间隔的频段(图1)并不是挑战,而是解决更大τ值的机会。虽然上述内容提供了我们算法的数学公式,但我们在下面描述了处理商用WiFi卡时需要考虑的重要系统因素:

1   Chronos必须确保WiFi发射器和接收器能够在多个WiFi频段之间同步跳频。Chronos通过使用由发射器驱动的频段跳频协议来实现这一点。在切换频段之前(在我们的实现中每2-3毫秒切换一次),发射器会发出一个控制数据包,宣告下一个要跳转的频段。接收器会用一个确认响应来回应,并切换到宣告的频段。一旦接收到确认响应,发射器也会切换频段。为了安全起见,如果发射器和接收器在任何频段上在给定的超时时间内没有收到对方的数据包或确认响应,它们就会恢复到默认的频段。

2    我们的Chronos实现在84毫秒内(每秒12次)扫描所有WiFi频段。这在室内环境的信道相干时间范围内[39],并且可以通过经验在步行速度下定位用户(第10.3节)。

3    最后,我们将在第9.3节中讨论和评估Chronos协议对数据流量的影响。


四  消除数据包检测延迟 PDD(ELIMINATING PACKET DETECTION DELAY)

    

   Chronos采用以下步骤来考虑数据包检测延迟:

   (1)它获取35个可用WiFi频段上30个子载波上的测量无线信道;

   (2)它对这些子载波进行插值,以获得每个频段上零子载波上的测量信道相位,该相位不受数据包检测延迟的影响。

   (3)它使用得到的35个信道来检索飞行时间。

     迄今为止,我们基于信道h_i计算了飞行时间,这是信号在不同频率fi上通过空气传输时所经历的信道。然而,在实际操作中,空气中的信道hi与接收器测量的信道˜hi之间存在差异。具体来说,
接收器测量的信道˜hi除了飞行时间外,还会经历一种延迟:

    (CFO ) 即检测数据包存在的延迟。这种延迟的产生是因为WiFi接收器是根据其前几个时间样本的能量来检测数据包的存在。接收器需要跨越其能量检测阈值的样本数量取决于接收信号的功率以及噪声。尽管这种变化可能看似很小,但数据包检测延迟通常比飞行时间大一个数量级,特别是在室内环境中,飞行时间仅为几十纳秒(见第9.1节)。因此,考虑数据包检测延迟对于准确测量飞行时间和距离至关重要。

        因此,我们的目标是从测量的信道\hat{h_i}(其中包含飞行时间和数据包检测延迟)中推导出真实的信道hi(仅包含飞行时间)。为此,我们利用了WiFi使用正交频分复用(OFDM)这一事实。具体来说,WiFi数据包的比特是在频域上通过几个称为OFDM子载波的小频率段进行传输的。这意味着可以在每个子载波上测量无线信道\hat{h_i}。然后,我们提出以下观点:

CLAIM 4.1:The measured channel at subcarrier-0
does not experience packet detection delay, i.e., it is identical
in phase to the true channel at subcarrier 0.

在Carrier 0上测量的信道没有经历数据包检测延迟,即其在相位上与Carrier 0 上的真实信道相同。

   

原因:

    time-of-flight  发生在信号通过空气传输时。

    packet detection delay   延迟源于去除载波频率后(在基带中)在数字处理过程中发生的能量检测。

  因此,飞行时间和数据包检测延迟对无线OFDM信道的影响方式不同。

    设\tilde{h_{i,k}}为频率f_{i,k}上的OFDM子载波k的测量信道。在信号生命周期的不同阶段,\tilde{h_{i,k}}会经历两次相位旋转:

   1    phase rotation due to  air proportional to the over-theair   frequency

  相位旋转与空中频率f_{i,k}成正比。根据第3节中的方程2,频率f_{i,k}的相位值为:

其中τ为time-of-flight 。
 

2   phase rotation due to packet detection after  the removal of the carrier frequency

在去除载波频率后,由于数据包检测还会产生额外的相位旋转。这一额外的相位旋转可以表示为:
    
其中\delta_i为 is the packet detection delay。

因此,子载波k上的总测量信道相位为:


从上述方程中我们可以注意到,

当k=0时:

第二项

换句话说,在zero-subcarrier 中,零子载波所对应的测量信道 \hat{h_{i,k}} 与实际空中传输的真实信道 h_{i,k} 在相位上是相同的,这验证了我们的论断。

在实践中,这意味着我们可以在每个WiFi频段的零子载波(即中心频率)上应用第3节方程式4中描述的中国剩余定理。在美国,2.4 GHz和5 GHz的WiFi总共有35个具有独立中心频率的WiFi频段。因此,遍历所有WiFi频段会得到35个如方程式4所示的独立方程,我们可以通过求解这些方程来恢复time-of-flight。

还有一个问题有待解决。到目前为止,我们一直在使用WiFi频段零子载波上的测量信道。然而,WiFi发射器不会在零子载波上发送数据,这意味着这个信道根本无法测量。这是因为零子载波与硬件中的直流偏移(DC offsets)重叠,而直流偏移极难去除[22, 3]。那么,如果zero-subcarrier 甚至不包含数据,人们又该如何测量它们上的信道呢?

  幸运的是,Chronos能够通过利用传输信号的其余WiFi正交频分复用(OFDM)子载波来应对这一挑战。具体来说,它利用了室内无线信道基于物理现象这一事实。因此,它们在少量OFDM子载波上是连续的。这意味着Chronos可以通过对所有子载波上的测量信道相位进行(interpolate),来估计零子载波上缺失的相位。3实际上,802.11n标准[3]在每个WiFi频段上最多测量30个子载波上的无线信道。因此,对信道进行插值不仅有助于Chronos检索零子载波上的测量信道,而且还提高了对噪声的鲁棒性。


五  对抗多径效应

      

到目前为止,我们的讨论都是基于一个假设:

     即无线信号在其发射器和接收器之间沿单一直接路径传播。然而,室内环境富含多径效应,导致无线信号会在环境中的物体(如墙壁和家具)上反射。

 图3(a)展示了一个示例,其中信号从发送器到接收器沿三条路径传播。这些路径上的信号在空中传播时会经历不同的时间延迟,因此,接收到的信号是这些经过不同传播延迟的多路径信号副本的总和。

图3(b)使用多径轮廓来表示这一点。该轮廓在信号路径的传播延迟处出现峰值,这些峰值按各自路径的衰减程度进行缩放。因此,Chronos需要一个机制来找到这样的多径轮廓,以便区分不同信号路径的传播延迟。这样,它就可以确定飞行时间(time-of-flight)为这些传播延迟中的最小值,即最直接(最短)路径的延迟。

5.1 计算多径轮廓

5.2 反演非均匀离散傅里叶变换(NDFT)

5.1 计算多径轮廓(Non-uniform Discrete Fourier Transform or NDFT)

假设来自发射器的无线信号通过p条不同的路径到达接收器。每条路径接收到的信号对应着幅度{a_1,...a_p}和传播延迟\tau_1,\tau_2,...\tau_p}。请注意,等式1仅考虑了一条经历传播延迟和衰减的路径。在多径存在的情况下,我们可以扩展该等式,将中心频率f_{i,0}上的测量信道\tilde{h_{i,0}}表示为这些路径上信道之和,即:

现在,我们需要区分这些不同的路径并恢复它们的传播延迟。为此,我们注意到上述等式具有一种熟悉的形式——它就是众所周知的离散傅里叶变换(DFT)。因此,如果能够在许多均匀间隔的频率上获得信道测量值,那么通过简单的逆傅里叶变换就可以分离出各个路径。这种逆傅里叶变换具有一个可用于获得所有路径的传播延迟并计算多径轮廓(在由带宽定义的分辨率范围内)的闭式表达式。

    然而,WiFi频段并不是均匀间隔的——它们分散在2.4 GHz附近以及5 GHz的多个不连续频段内,如图1所示。如果我们能够在每个WiFi频段上测量˜hi,0,由于这些测量值并非在均匀间隔的频率上进行,因此无法直接用于计算逆傅里叶变换。事实上,由于我们对信道的测量值并非均匀分布,我们所面对的是非均匀离散傅里叶变换(NDFT)[The Nonuniform Discrete
Fourier Transform and Its Applications in Signal
Processing. 1999.]。为了恢复多径轮廓,我们需要对NDFT进行逆变换。

5.2 逆非均匀离散傅里叶变换   NDFT  (Inverting the NDFT)

     非均匀离散傅里叶变换(NDFT)是一个under-determined 系统,其中多个频率分量的响应无法获得(频率不是连续的)。因此,这样的傅里叶变换的逆变换没有单一的闭式解,而是存在多个可能的解。那么,Chronos如何从这些解中选择最佳解来找到真实的飞行时间呢?

       Chronos在inverse-NDFT优化中添加了另一个约束。具体来说,这个约束倾向于稀疏解,即只有少数主导路径的解。直观上,这源于这样一个事实:

      虽然室内环境中的信号会经过多条路径,但几条路径往往会占据主导地位,因为它们受到的衰减最小。实际上,其他定位系统也做出了这一假设,尽管不那么明确。例如,天线阵列系统可以根据使用的天线数量解析出有限数量的主导路径。

       我们可以将稀疏性约束用数学公式表示如下。设向量p在m个离散值τ ∈ {\tau_1,..\tau_m}处对inverse-NDFT进行采样。然后,我们可以在NDFT逆变换问题中引入稀疏性作为简单约束,以最小化p的L-1范数。在优化理论中,已经很好地研究了最小化向量的L-1范数会倾向于该向量的稀疏解[7]。因此,我们可以将求解逆NDFT的优化问题写为:


其中,F是n×m的傅里叶矩阵:

是在n个不同的中心频率{f_{1,0},f_{2,0},...f_{n,0}}处的无线信道的n×1向量,

‖·‖1是L-1范数,‖·‖2是L-2范数。这里的约束确保p的离散傅里叶变换是所需的˜h。换句话说,它确保p是˜h的一个候选  Inverting -NDFT解。目标函数通过最小化p的L-1范数来倾向于稀疏解。

我们可以使用拉格朗日乘数法重新表述上述优化问题为:

请注意,因子α是一个稀疏性参数,它强制执行稀疏性的程度。α的较大选择会导致p中的非零值更少。这个目标函数是凸的但不可微。

我们的优化方法借鉴了近端梯度方法,这是一类具有可证明收敛保证的特殊优化算法。

具体来说,我们的算法以在频率{f_{1,0},f_{2,0},...f_{k,0}}处测量的无线信道\tilde{h}和稀疏性参数α作为输入。然后,它通过计算目标函数中可微项(即L-2范数)的梯度,并在此过程中选择稀疏解即强制执行L-1范数),来应用梯度下降风格的算法。

算法1总结了逆NDFT并找到多径轮廓的步骤。

逆NDFT为Chronos提供了所有路径的飞行时间。Chronos仍然需要识别直接路径来计算发射器和接收器之间的距离。为此,Chronos利用了这样一个事实:在所有无线信号路径中,直接路径是最短的。因此,直接路径的飞行时间对应于多径轮廓中的第一个峰值。

值得注意的是,通过做出稀疏性假设,我们在多径轮廓中丢失了极弱路径的传播延迟。然而,Chronos只需要直接路径的传播延迟。只要这条路径在主导信号路径中,Chronos就可以准确地检索到它。

     当然,在一些不太可能的情况下,直接路径可能衰减得太厉害,从而导致在该情况下定位精度较差。我们在第9.1节的结果中描绘了代表性多径轮廓的稀疏性,并展示了其对整体精度的影响。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值