前言:
接 上一篇,这里重点讨论5-8,这篇是理解无线感知必看论文之一。
相关工作放在附件的资源里面
【无线感知会议系列-19 】WiFi Sensing with Channel State Information: A Survey-CSDN博客
目录:
- 简介
- 相关工作
- 信号处理
- 感知算法
- 感知应用
- 挑战和感知趋势
- 结论
- 专业名词解释
五 感知算法
本节介绍了基于模型和基于学习的WiFi感知算法。表5简要总结了WiFi感知算法,并给出了一些示例。
4.1 基于模型的算法
基于模型的算法是建立在物理理论(如菲涅耳区模型 Fresnel Zone model)或统计模型(如莱斯衰落模型 Rician fading model)基础之上的。
4.1.1 理论模型。
如第2.1节中的方程(1)所示,信道状态信息(CSI)是一个复数矩阵,代表多径MIMO(多输入多输出)信道的信道频率响应(CFR)。CSI的幅度衰减和相位偏移受到发射机与接收机之间的距离以及多径效应的影响,这些多径效应包括无线电波的反射、折射、衍射、吸收、极化和散射。自由空间传播的幅度衰减是
其中:
𝐷𝑡 和 𝐷𝑟 分别是发射机和接收机的天线方向性,
𝜆 是载波波长
𝑑 是发射机与接收机之间的距离。
该模型通过视距(LoS)路径模拟无线信号在自由空间中的传播。然而,在真实场景中,还存在其他物体和人类。根据方程(1),相位偏移受到每条路径时延的影响。当发射机或接收机以低于介质中无线电波速度的速度移动时,相位偏移还会受到多普勒效应的影响。观察到的频率为 𝑓 = 𝑓0 (𝑐 + 𝑣𝑟 )/(𝑐 + 𝑣𝑡 ),其中 𝑣𝑟 和 𝑣𝑡 分别是接收机和发射机相对于介质的速度,𝑐 是无线电波的速度,𝑓0 是原始载波频率。多普勒相位偏移是检测运动和估计速度的有效模型。
CSI(信道状态信息)的幅度和相位受到来自多条路径而非单一路径的无线电波的影响。菲涅耳区模型将发射机和接收机之间及其周围的空间划分为同心的长椭圆球状区域,即菲涅耳区。第𝑛个菲涅耳区的半径计算方式如图6所示。该图展示了无线电信号如何在菲涅耳区内的物体上传播和偏转。偏转后的信号通过多条路径传播到接收机。根据路径长度以及由此产生的幅度衰减和相位偏移,偏转信号会在接收机处产生增强(相长干涉)或减弱(相消干涉)的效果。
模型:𝑌 = 𝑓 (𝑋),其中 𝑋 代表CSI(信道状态信息)测量值,𝑌 代表检测、识别或估计结果。
算法:寻找映射函数𝑓(·),以便在给定𝑋的情况下检测、识别或估计𝑌。
到达角(AoAs)和到达时间(ToFs)是基于信道状态信息(CSI)进行追踪和定位的两种流行模型。它们通过方向和距离来表征多径信道的幅度衰减和相位偏移。AoAs和ToFs是通过天线阵列的CSI测量中的相位偏移或时延来估计的。多重信号分类(MUSIC)算法广泛用于估计AoAs,它根据CSI计算协方差矩阵的特征值分解[46]。AoAs是基于与特征向量正交的方向矢量来计算的。图7a展示了不同AoAs的MUSIC频谱的一个示例。ToFs可以通过功率时延谱(PDP)来估计,它表示具有不同时延的多条路径的信号强度。PDP是通过CSI的快速傅里叶逆变换(IFFT)来计算的。对应于CSI 𝐻(𝑓) 的PDP是
其中𝑁是路径数量,
和
分别是第𝑛条路径的衰减和时延,
𝛿(·)是脉冲函数。
ℎ(𝑡)的范数表示每条路径的信号强度,信号沿着这些路径以时延𝑡到达接收机,如图7b所示。
4.1.2 统计模型。
统计模型依赖于经验测量或概率函数来表征无线信道。莱斯衰落是一种被某些WiFi感知应用所使用的随机模型。它是一种针对多径信道的简单模型,其中存在一个比其他路径更强的主导路径。莱斯衰落信道的接收信号幅度遵循莱斯分布,其中
和
这里𝐾是直接路径中的功率与其他散射路径中的功率之比,Ω是总功率,即Ω = 𝜈² + 2𝜎²。信道状态信息(CSI)相似性是用于与运动相关的WiFi感知应用的广泛指标。它是通过两个CSI矩