python数据预处理 :样本分布不均的解决(过采样和欠采样)

本文介绍了Python中处理样本分布不均衡的方法,包括过采样和欠采样。过采样通过复制或合成少数类样本,而欠采样则减少多数类样本。此外,设置权重和集成方法也是常用策略。这些方法有助于改善模型的准确性和健壮性,防止过拟合。
摘要由CSDN通过智能技术生成

今天小编就为大家分享一篇python数据预处理 :样本分布不均的解决(过采样和欠采样),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
何为样本分布不均:

样本分布不均衡就是指样本差异非常大,例如共1000条数据样本的数据集中,其中占有10条样本分类,其特征无论如何你和也无法实现完整特征值的覆盖,此时属于严重的样本分布不均衡。

为何要解决样本分布不均:

样本分部不均衡的数据集也是很常见的:比如恶意刷单、黄牛订单、信用卡欺诈、电力窃电、设备故障、大企业客户流失等。

样本不均衡将导致样本量少的分类所包含的特征过少,很难从中提取规律,即使得到分类模型,也容易产生过度依赖于有限的数量样本而导致过拟合问题,当模型应用到新的数据上时,模型的准确性和健壮性将会很差。

样本分布不均的解决方法:

过采样 通过增加分类中样本较少的类别的采样数量来实现平衡,最直接的方法是简单复制小样本数据,缺点是如果特征少,会导致过拟合的问题。经过改进的过抽样方法通过在少数类中加入随机噪声、干扰数据或通过一定规则产生新的合成样本。

欠采样 通过减少分类中多数类样本的数量来实现样本均衡,最直接的方法是随机去掉一些多数类样本来减小多数类的规模,缺点是会丢失多数类中的一些重要信息。

设置权重 对不同样本数量的类别赋予不同的权重(通常会设置为与样本量成反比)

集成方法 每次生成训练集时使用所有分类中的小样本量,同时从分类中的大样本量中随机抽取数据来与小样本量合并构成训练集,这样反复多次会得到很多训练集和训练模型。最后在应用时,使用组合方法(例如投票、加权投票等)产生分类预测结果。这种方法类似于随机森林。缺点是,比较吃计算资源,费时。

数据预处理和数据清洗是数据分析和机器学习中非常重要的步骤。以下是Python数据预处理数据清洗的关键技术: 1. 缺失值处理:缺失值是指数据中的空值或者未知值。常见的处理方法包括删除包含缺失值的行或列、使用均值或中位数填充缺失值、使用插值方法填充缺失值等。 2. 异常值处理:异常值是指与其他观测值明显不同的值。处理异常值的方法包括删除异常值、将异常值替换为其他合理的值、使用统计方法检测和处理异常值等。 3. 数据类型转换:将数据转换为正确的数据类型是数据预处理的重要步骤。例如,将字符串类型转换为数值类型、将日期类型转换为时间戳等。 4. 数据标准化:数据标准化是将不同尺度的数据转换为相同尺度的数据,常用的方法有Z-score标准化、Min-Max标准化等。 5. 数据编码:将分类变量转换为数值变量是数据预处理的常见任务。常用的方法包括独热编码(One-Hot Encoding)、标签编码(Label Encoding)等。 6. 特征选择:特征选择是从原始数据中选择最相关的特征,以提高模型的性能和效率。常用的方法包括相关系数分析、方差分析、递归特征消除等。 7. 数据平衡:当数据集中某一类别的样本数量明显多于其他类别时,会导致模型对多数类别的预测效果更好。为了解决这个问题,可以使用欠采样过采样或者生成合成样本的方法来平衡数据集。 8. 数据集划分:将数据集划分为训练集、验证集和测试集是机器学习中常用的方法,可以用来评估模型的性能和进行模型选择。 9. 数据可视化:数据可视化是数据预处理的重要手段,可以帮助我们更好地理解数据的分布、关系和异常情况,从而指导数据清洗和特征工程的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值