目录
四、使用ML进行QKD和经典渠道优化的基于SDN的网络用例(important)
一、摘要
我们首次展示了一种机器学习方法,可帮助量子通信通道与经典通信通道共存。软件定义的网络用于在城市和校园网络上成功地实现密钥生成和传输。
二、简介
将量子密钥分发(QKD)与现有的“常规” DWDM光纤网络相集成对于将量子网络的实现和商业化变为现实至关重要。
1.在解决量子编码光子与C波段高强度经典信号的共存问题时,主要挑战是光子引起的噪声落入量子通道(ChQKD)中,这会使Ch-QKD质量和生成的秘密密钥率(SKR)恶化)。主要噪声源包括:i)拉曼散射(RS),ii)来自经典通道的非滤波光子(ChC),iii)非线性(例如FWM)引起的“带内”噪声光子,以及iv)自发的光学放大器发出的(ASE)光子。
最近的C波段量子共存演示2报告了给定波长分配下的点对点传输。但是,通过软件定义网络(SDN)启用的共存Ch-QKD和ChC的全网传输将通过动态选择经过噪声优化的网络路径来进一步抑制噪声,但通常需要考虑光谱中波长的动态分配在当前部署的光网络中。考虑到大量位于不同波长,不同信道间隔,由混合格式调制并携带不同频谱的Ch-C,很难在具有现实频谱利用的网络中实施传统的方法来估计Ch-QKD带内噪声数据速率。
因此,在本文中,我们首次应用了有监督的机器学习(ML)方法来估计在存在各种数量的Ch-C的情况下Ch-QKD的性能(噪声,SKR和量子误码率-QBER), C频段的频谱分配,发射功率和信道间隔。 机器学习的训练集从三个方面收集:一个来自实验室测试平台,两个来自现场试验光网络:校园和布里斯托尔城市网络(CityNet)。 比较了几种机器学习模型以评估预测结果。 此外,基于ML,我们提供了一种预测最佳光信道分配的方案,从而使SDN平台能够以频谱方式重新分配信道,以实现稳定的性能。 为了验证支持SDN的ML预测,采用了具有Ch-QKD性能的现场试验网络,显示了ML应用的可行性。
三、训练数据收集和机器学习模型
第三部分就不太理解了。
预测Ch-QKD的性能是一个回归问题,我们使用监督学习进行攻击。因此,集合中的每个训练实例都是由输入及其对应的输出组成的。输出是反映学习后要预测的Ch-QKD性能的参数。输入描述了Ch-Cs的属性,并由图1b得出结论。 N个信道,n个∈N个信道的中心波长和信道间隔被表示为矢量Λ和Δ。每个Ch-C发射功率和n通道的总功率也是输入特征,显示为P和T P∈[−15,-26] dBm,确定了由RS引起的噪声。这些特征C =(n,Λ,Δ,P)的组合将引起不同程度的四波混频(FWM)效果。组合的选择分布在图1c中以形成训练集,以模拟光路上不同的频谱利用。其他固定输入属性包括:伴随Ch-C的ASE噪声,模拟网络中添加的信道;调制格式和滤波是与Ch-Cs的功率和极化有关的属性;以及QKD探测器的特性决定了鲍勃的效率。对于输出,鲍勃的检测概率(暗数)用于评估Ch-QKD。
图1a中的测试台用于收集训练集,其中N(= 8)个Ch-Cs由可调激光器和32GBd DP-QPSK调制器模拟。由于从IDQ Clavis2生成的Ch-QKD固定在对应于ITU-T Ch-35的1551.90nm处,因此我们根据fijk和流量(高)选择混合产物更容易落入Ch-QKD的波长Λ = 2fmin(max)-fmax(min)以获得由1/2(N3-N2)个ChC引起的最大FWM影响。在进入WSS进行衰减和滤波以分别更改其发射功率之前,将对通道进行一次滤波和放大。在该测试台中使用了三种光纤类型:1公里的SSMF线轴,1公里的校园网和8.6公里的CityNet,相应的端到端损耗分别为9.5、10.2和9dB。传输后,将它们多路分解,并对Ch-QKD进行带通滤波,以用于Bob的噪声,SKR和QBER的检测。我们获得了5个训练集(每个都有164个实例)和5个验证集(每个都有43个实例)。验证集被排除在训练集之外,以评估在不可预见的条件下对Ch-QKD的预测。考虑到由于有限的实验室设置,我们获得的训练集数量较少,因此选择了以下监督的ML模型进行比较,包括随机森林回归(RF),最小二乘(LS),K邻域回归(KN) ,套索和山脊回归。 RF被用来设定基准,因为它被证明是来自17个家族的179个分类器中最好的一个。
a)用于收集三种纤维类型的训练集的试验台示意图:实验室,校园和CityNet; b)监督学习的输入/输出训练集的组成; c)用于组成训练集的Ch-C的C波段分布在不同的ΔF中,n =(1、4、8),将Ch-QKD固定在1551.9nm,每行每种颜色在ITU-T DWDM中为ac∈CC波段; d)使用ML模型针对两个给定信道条件预测的SKR和e)带内噪声。
图2a比较了5个ML模型在预测噪声,QBER和SKR验证集方面的结果。计算了预测值和监视值之间的均方误差(MSE)。 K-Neighbors表现出最佳的整体性能,但略高于RF。图2b揭示了Ch-Cs不同组合c的频谱分配示例。图1d-e进一步基于来自验证集的两个输入示例详细阐述了ML预测。结果表明,RF的预测具有较高的方差,而平均误差则较小,因为它是模型集成方法。 KN的性能优于RF,但由于它是非参数的,因此会遭受“维数诅咒”。这在我们的7维输入属性空间中是隐藏的,但是其性能会随着维的增加而显着下降。另一方面,在线性假设下,LS很容易拟合。作为正则线性回归,Ridge具有与LS相当的性能,因为它避免了参数的极值以给出先验的信念。
四、使用ML进行QKD和经典渠道优化的基于SDN的网络用例(important)
图3a显示了用例测试台,该测试台通过将ML添加为SDN应用程序来实现光网络(重新)配置以保证QKD和Ch-Cs传输。 光平面与图1a相似,来自Alice的编码光子通过访问节点复用到网络中。 在控制平面中,开发了一种监视应用程序,以在信道分配和光功率水平方面连续监视上述光链路的状态。 这些值使用扩展的OpenFlow(OF)从启用SDN的SSS发送到SDN控制器(OpenDaylight),然后由应用程序处理。 MongoDB数据库旨在存储监视值,从而允许ML应用程序提取它们以预测Ch-QKD带内噪声,SKR和QBER。 预测之后,会将配置数据发送到SDN控制器,该SDN控制器将通过其OF Agent适当配置交换机。
图2:a)比较MSE对SKR,QBER和来自RF,LS,Lasso,KN和Ridge ML模型的噪声的预测; b)用1551.9nm的Ch-QKD为8通道分配训练集; c)-f)在c)1-3:初始阶段,d)1-3:第一阶段,e)1-3:第二阶段,以及f)1中监视和预测用例的SKR和噪声 -3:第3阶段,添加了新的Ch-C及其(重新分配)。
在这种用例中,我们首先在三个路径中的最优路径上咨询经过训练的ML算法,以传输Ch-QKD和四个Ch-C(图2c1-3初始阶段)。然后,在链路中再添加4个Ch-C,以模拟网络变化,监视应用程序会随着功率的增加观察到这一变化(图2d1-3 Stage-1)。调用ML可以根据当前信道条件预测噪声,SKR和QBER。如果预测值比要求的阈值差,则将调用两个备选方案:i)在同一路径中重新分配8个Ch-C的波长,以减少它们对Ch-QKD的影响; ii)切换到另一条路径。在这种情况下,将采用选项i),并确定两个重新分配选择:Ch75-77-70-81-83-85-87-89和另一个备份通道Ch11-17-23-29-41-47 -53-59。后者适合于频谱更加分散的路径。图2e-f显示了噪声和SKR预测。然后将决定发送到SDN控制器,该SDN控制器执行网络内光学设备的相应重新配置,以重新分配ChC,包括激光波长和SSS。重新分配后,与图2e1-3阶段2和图2f1-3阶段3所示的预测值相比,通过监视噪声和SKR来验证Ch-QKD。图3b表示发送的用于配置SSS的OF消息示例,描述了SSS的输入/输出端口A和4,新的1554.134nm波长和38 GHz滤光片宽度。
图3:a)带有ML和网络监控功能的支持SDN的网络用例的现场试验台; b)扩展OF消息供SSS在不同阶段重新分配Ch-C。
五、结论
我们用多个ML模型预测QKD-DWDM网络中的Ch-QKD质量,这表明KN是最准确的模型。 ML预测的效率已在启用SDN的现场试用光纤网络中得到了证明。