在 C++ 中分配一个未初始化内存,然后读取它,会读取到这块内存之前被使用所留下的值,这种现象我称之为 flashback。
- 栈内存很容易出现这种现象,而且很容易观测出某种规律。
for (int i = 0; i < 10; ++i) {
int a;
std::cout << a << " ";
a = i;
}
这段代码可能输出
0 0 1 2 3 4 5 6 7 8
除了第一个 0,其余的 0 1 2 3 4 5 6 7 8 都是 flashback 的结果
- 堆内存也会出现这种现象,但是很难观测出规律。
struct A
{
int8_t m1[13];
int x;
};
for (int i = 0; i < 10; ++i) {
A* a = new A;
std::cout << a->x << " ";
a->x = i;
delete a;
}
std::cout << std::endl;
这段代码仍然可能输出
0 0 1 2 3 4 5 6 7 8
除了第一个 0,其余的 0 1 2 3 4 5 6 7 8 都是 flashback 的结果。
在实际的业务逻辑代码中,new 操作可能深埋在复杂代码之中,并且不同对象的 new 操作也会相互影响。
struct A
{
int8_t m1[13];
int x;
};
struct B
{
int8_t m1[13];
int x;
};
// cs1
A* a1 = new A;
a1->x = 66;
delete a1;
// cs2
/*
B* b1 = new B;
b1->x = 22;
delete b1;
*/
// cs3
A* a2 = new A;
delete a2;
std::cout << a1 << " " << a2 << " " << std::boolalpha << (a1 == a2) << " " << a2->x << std::endl;
这段代码可能输出
0x1b05eb0 0x1b05eb0 true 66
成功观测到了 flashback
把 cs2 的注释解开,可能输出
0x1718eb0 0x1718eb0 true 22
假设 cs2 的执行次数是随机的,或者 b1->x = 22
的 22 是随机的,并且只观测 a1 和 a2 的关系,那么观测到 flashback 的次数也是随机的。
题目描述:
操作给定的二叉树,将其变换为源二叉树的镜像。
数据范围:二叉树的节点数 0≤n≤1000 , 二叉树每个节点的值0≤val≤1000
要求: 空间复杂度 O(n) 。本题也有原地操作,即空间复杂度 O(1) 的解法,时间复杂度 O(n)
比如:
源二叉树
镜像二叉树
示例:
输入:
{8,6,10,5,7,9,11}
返回值:
{8,10,6,11,9,7,5}
解题思路:
本题考察数据结构树的使用,可用递归来解。两种解法:一种是自上而下,从根结点开始,直接交换左右子树结点,再分别对它们的左右子树进行处理,一直到最深层完成;另一种是自下而上,探索到最深层后,左右子树互换,再返回到上一层,进行左右互换,依次类推,到返回至根结点时,对根结点的左右子树进行互换,此时完成递归。