本地部署大模型!一篇教会你,奶奶看了都会的教程!

开源大模型更新迭代太快,今年刚推出的模型可能过几个月就过时了。关于这个问题,我想更多的不是思考现在能部署哪些大模型,而是要思考三个方面:

一是如何找到最新的大模型,二是如何判断本地硬件资源是否满足大模型的需求,三是如何快速部署大模型。

一、如何找到最新的大模型?

1.huggingface

huggingface可以理解为对于AI开发者的GitHub,提供了模型、数据集(文本|图像|音频|视频)、类库(比如transformers|peft|accelerate)、教程等。

几乎所有最新开源的大模型都会上传到huggingface,涵盖多模态、CV、NLP、Audio、Tabular、Reinforcement Learning等模型。

上图红框处就是meta最新开源的Llama3,参数量为8B(80亿参数)。

2.modelscope

huggingface有时存在网络不稳定的问题

这里推荐国内比较好的平台modelscope

由上图可看到,通过modelscope也可以几乎下载所有开源大模型,包括零一万物百川、通义千问等等。

比如chatglm2-6b,代表它的模型名称为chatglm2,参数量为60亿。

二、如何判断本地硬件资源是否满足大模型的需求?

首先要搞清楚,本地可以部署什么大模型,取决于你的硬件配置(尤其关注你GPU的显存)。

一般来说,只要你本地机器GPU的显存能够满足大模型的要求,那基本上都可以本地部署。

那么大模型类别这么多,有7B、13B、70B等等,我的GPU显存如何准备呢?

在没有考虑任何模型量化技术的前提下:

*公式:模型显存占用(GB) = 大模型参数(B)2

这是一个非量化情况下显存占用的经验数值,仅供参考。除此之外,还有许多大模型量化和推理加速技术,作为一个普通的程序员需要学吗?如果要学应该学习哪些技术?模型部署后如何做大模型应用?学什么才能不被淘汰,还有机会提高收入、赚到技术红利吗?

回到主题,我之前为了探索千亿级大模型到底需要多少计算资源,用云计算资源部署了Qwen1.5-110B-Chat,看看部署它到底需要多少存储资源,并且测试在不量化、8bit量化、4bit量化下的显存消耗。

实验数据如下:

下载Qwen1.5-110B-Chat共占用硬盘空间208G

本地部署Qwen1.5-110B-Chat没有考虑任何量化技术,占用显存215GB

1722909550129)

采用8bit量化部署Qwen1.5-110B-Chat占用显存113GB。在 Transformers 中使用 LLM.int8() 只需提前安装pip install bitsandbytes即可,使用 LLM.int8() 方法量化transformer模型具体示例如下:

from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
  'qwen/Qwen1___5-110B-Chat',
  device_map='auto',
  load_in_8bit=True,
  max_memory={
    i: f'{int(torch.cuda.mem_get_info(i)[0]/1024**3)-2}GB'
    for i in range(torch.cuda.device_count())
  }
)

采用4bit量化部署Qwen1.5-110B,占用显存62GB,预计1块80GB显存显卡即可部署。

from transformers import BitsAndBytesConfig
import torch
nf4_config = BitsAndBytesConfig(
   load_in_4bit=True,
   bnb_4bit_quant_type="nf4",
   bnb_4bit_use_double_quant=True,
   bnb_4bit_compute_dtype=torch.bfloat16
)

model_nf4 = AutoModelForCausalLM.from_pretrained('qwen/Qwen1___5-110B-Chat', quantization_config=nf4_config)

所以回到主题上,如果追求极致本地部署。

在4bit量化的情况,满足本地机器GPU显存(GB) >= 大模型参数(B)/2,可以尝试本地部署。

举个例子:

如果你有一块T4显卡,显存为16GB。可以支持部署6B、7B参数量级的大模型,如果采用4bit量化,可以尝试32B的大模型(不一定保证部署成功)。

参考论文:

  • LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

  • GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED TRANSFORMERS

三、如何快速部署

推荐使用ollama,像启动镜像一样本地下载运行大型语言模型

下载模型

Ollama 支持的模型列表见:https://ollama.com/library

ollama pull llama3

启动服务

如果你装好了ollama,启动模型服务只需执行如下命令:

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Phi-33.8B2.3GBollama run phi3
Mistral7B4.1GBollama run mistral
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Solar10.7B6.1GBollama run solar

四、最后

综上所述,通过huggingface或者modelscope快速了解最新的大模型,并通过公式计算硬件要求,最后可通过ollama快速部署大模型。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文转自 https://blog.csdn.net/z099164/article/details/140947035?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值