Hadoop大数据平台架构与实践--基础篇

简介:本课程首页介绍了hadoop架构体系,包括NameNode和DataNode的作用;然后介绍了MapReduce作业的中间过程和原理,包括缓存的使用,相关参数的性能调优;之后介绍了如何运用MapReduce实现矩阵相乘,并且实现简单的推荐算法

 

使用wget工具:

设置JAVA_HOME的路径:

设置hadoop的工作目录,namenode的目录,文件系统namenode的访问:

设置文件系统数据的存放目录:

设置任务调度器的访问方式:

添加HADOOP_HOME和修改PATH:

测试Hadoop的安装效果:

namenode的格式化:

进行启动:

查看hadoop是否正常运行:

查看hadoop下的文件:

 

 

若某个节点出现故障:

若某个机架出现故障:

客户端发送文件读请求——>namenode返回元数据(从哪些datanode找到)——>客户端读取block,下载下来之后组装;

客户端文件拆分成block——>通知namenode返回可用的 有足够磁盘空间的datanode——>客户端对block进行写入——>流水线复制——>更新元数据 ;

mkdir examples //生成一个examples目录

cd examples //进入examples文件路径

mkdir word_count //生成word_count目录

cd word_count //进入word_count目录

mkdir input //用于存放提交的作业

mkdir word_count_class //用于存放编译好的类

hadoop存放文件命令 hadoop fs -put hadoop-env.sh /input<br>

hadoop获取文件命令 hadoop fs -get<br>

hadoop删除文件命令 hadoop fs -rm <br>

hadoop创建目录命令 hadoop fs -mkdir<br>

hadoop 格式化操作 : hadoop namenode -formet

hadoop查看存储信息 hadoop dfsadmin -report<br>

MapReduce容错机制

1.重复执行,任务失败后,重复执行4次;

2.推测执行,对于较慢的任务,新建taskTracker执行相同任务,使用最先完成的task。

 

 

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {
    public static class WordCountMap extends
            Mapper<LongWritable, Text, Text, IntWritable> {
        private final IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            StringTokenizer token = new StringTokenizer(line);
            while (token.hasMoreTokens()) {
                word.set(token.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class WordCountReduce extends
            Reducer<Text, IntWritable, Text, IntWritable> {
        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            context.write(key, new IntWritable(sum));
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf);
        job.setJarByClass(WordCount.class);
        job.setJobName("wordcount");
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setMapperClass(WordCountMap.class);
        job.setReducerClass(WordCountReduce.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.waitForCompletion(true);
    }
}

public class Sort {

    public static class Map extends
            Mapper<Object, Text, IntWritable, IntWritable> {

        private static IntWritable data = new IntWritable();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();

            data.set(Integer.parseInt(line));

            context.write(data, new IntWritable(1));

        }

    }

    public static class Reduce extends
            Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {

        private static IntWritable linenum = new IntWritable(1);

        public void reduce(IntWritable key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {

            for (IntWritable val : values) {

                context.write(linenum, key);

                linenum = new IntWritable(linenum.get() + 1);
            }

        }
    }

    public static class Partition extends Partitioner<IntWritable, IntWritable> {

        @Override
        public int getPartition(IntWritable key, IntWritable value,
                int numPartitions) {
            int MaxNumber = 65223;
            int bound = MaxNumber / numPartitions + 1;
            int keynumber = key.get();
            for (int i = 0; i < numPartitions; i++) {
                if (keynumber < bound * i && keynumber >= bound * (i - 1))
                    return i - 1;
            }
            return 0;
        }
    }

    /**
     * @param args
     */

    public static void main(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage WordCount <int> <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "Sort");
        job.setJarByClass(Sort.class);
        job.setMapperClass(Map.class);
        job.setPartitionerClass(Partition.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

}

 

 

转载于:https://my.oschina.net/u/3765607/blog/2051698

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值