ENVI&ArcGis——植被覆盖度提取

本文详细介绍遥感图像处理流程,包括影像预处理如几何校正、镶嵌与裁剪,利用决策树进行信息提取,以及最终的专题制图过程。通过具体步骤指导如何使用ENVI软件完成遥感图像的高效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遥感图像处理、遥感信息提取与应用分析

一. 影像预处理

1 几何校正

第一步:打开并显示图像文件
打开ENVI Classic,点击【主菜单>File>Open Image File】,打开tm00.img\tm02.img影像,并分别在Display中显示两个影像。
加载数据
图1 加载数据

第二步:启动几何校正模块

主菜单>Map>Registration>Select GCPs:Image to Image,打开几何校正模块。选择显示tm00.img文件的Display为基准影像(Base Image),显示tm02.img文件的Display为待校正影像(Warp Image),点击OK进入采集地面控制点。
在这里插入图片描述
图2 几何校正选择
第三步:采集地面控制点
1、在两个Display中找到相同区域,在Zoom窗口中,点击左小下角第三个按钮,打开定位十字光标,将十字光标到相同点上,点击Ground Control Points Selection上的Add Point按钮,将当前找到的点加入控制点列表。
2、用同样的方法继续寻找其余的点,当选择控制点的数量达到3时,RMS被自动计算。选择Options>Auto Predict,打开自动预测功能。这时在Base Image(Spot影像)上面定位点,Warp Image(TM影像)上会自动预测区域。
在这里插入图片描述
图3 选取地面控制点
3、当选择一定数量的控制点之后,利用自动找点功能。Ground Control Points Selection上,选择Options>Automatically Generate Points,选择匹配波段,点击OK,弹出自动找点参数设置面板,设置Tie点的数量为50,Search Window Size为131,其他选择默认参数,点击OK
4、点击Ground Control Points Selection上的Show List按钮,可以看到选择的所有控制列表,如下图所示。
在这里插入图片描述
图4 控制点
选择Image to Image GCP List上的Options>Order Points by Error,按照RMS值有高到底排序。
5、对于RMS过高的点,直接做删除处理。
第四步:选择校正参数输出

  1. 在Ground Control Points Selection上,选择Options->Warp File,选择校正文件。
  2. 在校正参数面板中,校正方法选择多项式(2次)。
  3. 重采样选择Bilinear,背景值(Background)为0.
  4. Output Image Extent:默认是根据基准图像大小计算,可以做适当的调整。
  5. 选择输出路径和文件名,单击Ok按钮。
    在这里插入图片描述
    图5 输出界面
    第五步:检验校正结果
    同时在两个窗口中打开图像,其中一幅是校正后的图像,一幅是基准图像,通过地理链接(Geographic Link)检查同名点的叠加情况。
    在这里插入图片描述
    图6 检验校正结果

2 镶嵌

第一步:加载数据
打开jztm02img及tm01.img,在Toolbox中,打开Mosaicking /Seamless Mosaic,启动图像无缝镶嵌工具Seamless Mosaic
在Data Ignore Value列表中,可设置透明值,当重叠区区有背景值时候,可设置这个值。
在这里插入图片描述
图7 修改背景值
第二步:匀色处理
匀色方法是直方图匹配(Histogram Matching)
在这里插入图片描述
图8 均色处理

第三步:接边线与羽化

第四步:输出结果

(1)Export面板中,设置重采样方法Resampling method:Cubic Convolution;
(2)设置背景值Output background Value:0;
(3)选择镶嵌结果的输出路径;
(4)单击Finish执行镶嵌
在这里插入图片描述
图9 输出结果
镶嵌结果
在这里插入图片描述
图10 镶嵌结果

3 裁剪

第一步:加载数据
在Toolbox中,打开Regions of Interest /Subset Data from ROIs。Select Input File选择Beijing_TM.dat,点击OK,打开Subset Data from ROIs Parameters面板;
第二步:执行裁剪
在Subset Data from ROIs Parameters面板中,设置以下参数:
Select Input ROIs:选择EVF:矢量.shp
Mask pixels output of ROI?:Yes
Mask Background Value背景值:0
选择输出路径和文件名,单击OK执行图像裁剪。
在这里插入图片描述
图11 裁剪结果

二. 决策树提取

提取区域缓坡植被信息、非朝北缓坡植被、陡坡植被、水体、裸地、背景区,提取规则如下:
朝北缓坡植被:NDVI大于0.25,坡度小于20°,朝北
非朝北缓坡植被:NDVI大于0.25,坡度小于20°,非朝北
陡坡植被:NDVI大于0.25,坡度大于等于20°
水体:NDVI小于等于0.25,波段4的DN值大于0且小于20
裸地:NDVI小于等于0.25,波段4的DN值大等于20
背景区:NDVI小于等于0.25,波段4的DN值等于0
第一步:加载数据
打开新建决策树工具,路径为Toolbox/Classification/Decision Tree/New Decision Tree,如下图所示,默认显示一个节点和两个类别;
第二步;决策树分类
首先按照NDVI来区分植被与非植被。单击节点Node 1,在弹出的对话框内输入节点名(Name)和条件表达式(Expression),如下图所示;
在这里插入图片描述
图12 添加节点
点击OK后,在弹出的Variable/File Pairings对话框内需要为 {ndvi} 指定一个数据源,如下图所示。点击面板中显示 {ndvi} 的表格,然后选择boulder_tm.dat即可。
在这里插入图片描述
图13 添加数据源
同样的方法,将所有规则输入,末节点图标右键Edit Properties,可以设置分类结果的名称和颜色,最后结果如下图所示。
在这里插入图片描述
图14 决策树
第三步:执行决策树
选择Options > Execute,可以执行决策树。由于使用了多源数据,各个数据可能拥有不同的坐标系、空间分辨率等。在弹出的Decision Tree Execution Parameters对话框(如图)中,需要选择输出结果的参照图像,这里选择boulder_tm.dat,即输出的分类结果的坐标系和空间分辨率等信息与boulder_tm.dat相同。
选择输出路径和文件名,点击OK即可

在这里插入图片描述
图16 决策树分类结果
第四步:统计各类植被信息百分比
在这里插入图片描述
图17 信息百分比图

三. 专题制图

点击【菜单栏】中的【视图】,切换为【布局视图】,点击【插入】,分别插入“标题”、“图例”、“比例尺”、“注记”、“方里网”,调整到合适的区域,点击【文件】【导出地图】,将专题图导出。
在这里插入图片描述
图18 专题地图

### 使用ENVI计算遥感图像中植被覆盖度 #### 准备工作 为了准备计算植被覆盖度,需要获取并预处理所需的遥感影像。通常使用的数据源包括Landsat系列卫星影像或其他多光谱/高光谱传感器的数据。 - **下载遥感影像**:从官方渠道如USGS Earth Explorer下载适用于研究区域的高质量遥感影像,例如Landsat 8 OLI影像[^4]。 - **打开和读取影像文件**:启动ENVI软件,在菜单栏选择`File -> Open Image File...`来加载已下载的遥感影像文件。对于Landsat 8 OLI影像,还需关联其对应的`.txt`元数据文件(即带有MTL字样的文件),以便后续操作能够自动识别波段信息和其他参数设置。 #### 预处理阶段 完成上述准备工作之后,进入必要的预处理步骤: - **辐射定标**:通过转换DN值到物理量级(反射率或辐亮度)来进行辐射定标。这一步骤可以通过ENVI内置工具实现,具体路径为`Basic Tools -> Radiometric Calibration`,按照提示选择相应的选项卡完成该过程。 - **大气校正**:消除由大气散射等因素引起的误差影响。推荐使用QUAC算法执行快速大气校正(`Preprocessing -> Atmospheric Correction`),它能有效减少因大气条件变化带来的干扰。 #### 计算NDVI 基于经过预处理后的影像,可以进一步构建归一化差异植被指数(NDVI),这是衡量植被健康状况的重要指标之一,并作为估算植被覆盖度的基础输入变量。 ```matlab ndvi = float(band_nir - band_red)/(band_nir + band_red); ``` 其中`band_nir`表示近红外波段反射率;而`band_red`则对应红光波段反射率。此公式可在IDL脚本环境内编写运行,也可以借助ENVI自带的功能模块直接生成NDVI图层[^2]。 #### 应用像元二分模型估计植被覆盖度(FVC) 最后,依据像元二分模型原理,结合之前获得的NDVI结果以及设定好的阈值范围(比如NDVIsoil, NDVIveg),即可求解出目标区域内各像素点上的实际植被覆盖比例。具体的表达式如下所示: \[ FVC=\frac{NDVI_{\text {pixel}}-NDVI_{\text {soil}}}{NDVI_{\text {veg}}-NDVI_{\text {soil}}} \] 这里需要注意的是,不同地区可能具有不同的背景特征,因此建议根据实际情况调整这些关键参数以提高精度。 #### 结果可视化与分析 得到最终的FVC地图后,可将其导出至其他地理信息系统平台(如ArcGIS)做更深入的空间分布模式探讨或是与其他因子之间的关系探究。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nochengzi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值