自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

国科大硕士在读,分享Python/GEE/Matlab/R专业代码实践,涵盖数据分析、算法开发与应用技巧等,以代码会友。

聚焦Python/GEE/Matlab/R等,提供代码解析|实战案例|开发技巧。开放技术交流,欢迎开发者同行切磋共进。

  • 博客(128)
  • 收藏
  • 关注

原创 【数据分享】中国河流水系 2000-2022 年变化矢量数据集(后附下载链接参考)

中科院团队发布2000-2022年中国河流水系高精度矢量数据集,填补国内长时序河网数据空白。该数据集采用多源遥感融合与拓扑建模技术,实现30米分辨率、22年连续观测,精准提取≥3米季节性河道。包含河道中心线、节点网络及河宽三类矢量数据,支持水文建模、生态评估等科研需求。相比国际同类数据,在中小河流识别精度(达92%)和时间连续性上优势显著,已应用于冰川融化和采砂活动等生态影响研究。数据集通过可持续发展大数据平台开放共享,并提供专利算法支持。

2025-09-06 18:01:43 1186

原创 【机器学习入门】6.3 朴素贝叶斯的应用:从账号检测到文本分类的实战落地

本文介绍了朴素贝叶斯分类器在真实业务场景中的应用。通过社交账号检测和文本分类两个典型案例,详细展示了从特征选择、数据预处理到模型预测的完整流程。重点包括:1)社交账号真实性检测中关键特征(日志率、好友率等)的选取与离散化处理;2)文本分类中的词袋模型应用;3)避免零概率的平滑技巧。文章还总结了朴素贝叶斯"简单高效、小样本友好"的优势,并给出学习建议,建议读者通过实践掌握这一基础算法,为学习更复杂模型打下基础。

2025-09-06 12:02:43 699

原创 【机器学习入门】6.2 朴素贝叶斯分类器详解:从理论到西瓜数据集实战

本文介绍了朴素贝叶斯分类器的核心原理与应用。文章首先解释了为什么需要"朴素"假设(特征条件独立),以简化多特征联合概率计算。随后详细拆解了算法的三大步骤:数据准备、训练阶段(计算先验概率和条件概率)和应用阶段(分类预测),并通过西瓜数据集2.0的实战案例演示了具体计算过程。最后总结了该算法的优缺点(简单高效但对特征独立性敏感)和适用场景(文本分类、小样本问题等),指出其作为机器学习入门算法的价值。全文以通俗语言配合实例,帮助读者理解这个基础但实用的分类方法。

2025-09-06 11:38:11 1004

原创 【机器学习入门】6.1 贝叶斯决策论:从概率到最优决策

贝叶斯决策论是机器学习中实现最优分类决策的核心方法,其本质是通过概率解决不确定性问题。文章从"抽奖"案例切入,区分了传统频率概率(已知总体算局部)和贝叶斯关注的逆概率(已知局部推总体),指出现实问题90%都是逆概率问题。通过"女神是否喜欢我"的生动例子,详细拆解了贝叶斯定理中先验概率、似然概率、证据因子等概念,并展示了如何用新证据更新初始判断的过程。最后说明贝叶斯决策论在分类任务中的应用逻辑:选择后验概率最大的类别以最小化误判损失。文章强调先验概率需基于数据而非主观猜

2025-09-05 16:39:06 557

原创 【机器学习入门】5.5 线性回归模型小结——从基础到扩展,梳理完整知识链

本文系统梳理了线性回归模型的核心原理与应用扩展。首先回顾线性回归的本质——通过最小化平方损失函数求解最优参数,介绍了求导和最小二乘法两种参数求解方法。然后扩展到非线性回归(处理曲线趋势数据)和多元回归(多特征场景),并列举了在经济学、金融、流行病学等领域的实际应用案例。最后总结了从回归概念到模型扩展的完整知识链,强调线性回归作为基础模型的重要性,并为后续学习逻辑回归、神经网络等模型奠定基础。文章旨在帮助读者巩固线性回归知识,理解其扩展价值与实际应用。

2025-09-05 13:07:11 1036

原创 【机器学习入门】5.4 线性回归模型的应用——从CO₂浓度预测学透实战全流程

本文以夏威夷莫纳罗亚山CO₂浓度预测为例,详解线性回归的实战应用。通过1970-2018年实测数据,验证了年份与CO₂浓度间的线性关系,建立y=1.75x-3120.44的预测模型,并成功预测2020年(414.56ppm)和2100年(517.56ppm)的CO₂浓度。文章重点阐述了线性回归的适用条件(线性因果关系、连续值预测)、核心参数计算方法和模型验证流程,同时指出其局限性(非线性数据不适用、长期预测风险)。为初学者提供了清晰的线性回归应用框架,强调数据预处理和模型验证的重要性,适合刚入门的数据分析学

2025-09-03 23:52:00 831

原创 【机器学习入门】5.4 线性回归模型的应用——从CO₂浓度预测学透实战全流程

本文以夏威夷莫纳罗亚山CO₂浓度预测为例,系统讲解线性回归的实战应用。通过1970-2018年的真实观测数据,从数据梳理、线性验证、参数计算到模型建立,完整演示预测流程。重点解析了如何计算斜率a(1.75ppm/年)和截距b(-3120.44),并预测2020年(411.56ppm)和2100年(552.56ppm)的CO₂浓度。文章强调线性回归适用的两个核心前提:线性因果关系和离群值处理,并总结了通用六步法。案例显示线性回归在连续值预测中的实用价值,同时也指出其不适用于非线性数据和长期外推的局限性。

2025-09-03 23:50:49 934

原创 【机器学习入门】5.3 线性回归原理——从模型定义到参数求解,手把手带练

本文系统讲解了线性回归模型的原理与应用,围绕"模型定义-参数学习-损失计算-优化求解"四个核心步骤展开。首先介绍了线性回归的基本形式y=ax+b及其参数含义,通过身高预测案例说明斜率和截距的物理意义。接着详细讲解了如何利用训练数据最小化平方损失函数来求解最优参数,包括损失函数的计算示例和参数求解的数学推导过程。文章通过具体数据逐步演示了参数a和b的计算方法,并验证了最优模型的有效性。最后总结了线性回归的核心四步流程,强调理解参数意义和计算过程的重要性,为后续学习更复杂模型奠定基础。全文注

2025-09-02 21:40:48 1182

原创 【机器学习入门】5.2 回归的起源——从身高遗传到线性模型的百年演变

摘要:回归分析源于19世纪高尔顿对身高遗传的研究,他通过收集近千个家庭数据,首次发现"向均值回归"现象——高个子父母的后代身高会向平均值靠拢。这一发现不仅解释了人类身高稳定的原因,还催生了"回归"术语。高尔顿进一步用最小二乘法拟合出首个线性预测公式,奠定了线性回归模型的基础。从最初的身高预测到现代机器学习应用,回归分析的发展历程展示了如何用数据揭示规律、用简单模型解决复杂问题。理解这段历史,能帮助初学者掌握回归分析的本质——通过统计规律实现预测。

2025-09-02 21:26:14 1064

原创 【机器学习入门】5.1 线性回归基本形式——从“选西瓜”看懂线性模型的核心逻辑

本文介绍了机器学习中最基础的预测模型——线性回归。文章从房价预测、西瓜好坏判断等生活化案例入手,解析线性回归的核心思想:通过特征的线性组合预测连续结果。重点讲解了模型的权重和偏置参数的实际意义,并以"选西瓜"为例演示了公式应用。文章强调线性回归因其逻辑简单、可解释性强而成为入门首选,同时介绍了其参数学习方法(正规方程和梯度下降)和实际应用场景(房价、成绩、销量预测等)。最后总结线性回归三要素:特征权重、偏置和线性组合,为后续学习复杂模型奠定基础。

2025-09-01 22:56:07 935

原创 【机器学习入门】4.4 聚类的应用——从西瓜分类到防控,看无监督学习如何落地

聚类的核心价值在于 “无需标签,从数据中找规律”—— 它不像分类需要 “老师教答案”,而是靠数据自身的相似性自动分组,尤其适合 “不知道结果是什么” 的探索性场景。对于入门学生,建议从 “小场景” 入手实践:比如用自己的消费数据(每月外卖次数、网购金额)做聚类,分 “高频消费、中频消费、低频消费” 三群;或用水果图片的像素特征做聚类,感受高维数据的聚类过程。聚类是无监督学习的 “敲门砖”,学好它,后续学习异常检测、降维等技术会更轻松。如果本文有哪个场景或步骤没看懂,欢迎在评论区留言,我们一起拆解!

2025-09-01 22:06:49 1137

原创 GEE 实战:Landsat 5 月度 NDVI 数据插值填补(以 8 月为例)_后附完整代码

本文介绍了一种基于Google Earth Engine的Landsat5月度NDVI数据缺值填补方法。针对1992年8月数据,通过优化的云掩膜函数精准过滤云、云影及饱和像元,计算目标月及邻近7月、9月的NDVI中值影像。采用"目标月优先、前月次之、后月补充"的分层插值策略填补缺值区,确保结果符合植被生长连续性。该方法在GEE平台实现高效处理,支持可视化对比和30米分辨率数据导出,适用于大区域长时间序列分析,可根据实际需求扩展为多年处理或加权插值方案。

2025-08-31 22:43:28 505

原创 GEE 实战:计算 Landsat8 月均 NDVI 并导出(2013-2024)_后附完整代码

本文介绍了一种基于Google Earth Engine(GEE)平台批量处理Landsat8影像计算月均NDVI的方法。该方法通过加载研究区边界、预处理影像(去云和辐射定标)、计算NDVI指数,并循环处理2013-2024年的数据,最终实现月均NDVI的可视化和导出。代码采用模块化设计,包含去云函数、NDVI计算函数和批量处理循环,支持均值或中值合成,可根据研究需求调整分辨率(默认1000米)和时间范围。该方法为植被动态监测提供了高效的数据处理解决方案。

2025-08-31 22:34:04 47

原创 【机器学习入门】4.3 K-means算法——从原理到代码,手把手实现聚类

K-means是一种简单高效的无监督聚类算法,通过迭代优化簇心实现数据自动分组。文章通过生活化例子(如分水果)和具体坐标数据演示了算法核心流程:随机选K个初始簇心→计算距离划分簇→重新计算簇心→迭代至稳定。同时指出了K值选择、初始簇心敏感性和数据标准化等注意事项。最后用Python代码实战复现了二维数据的聚类过程,展示了算法在用户分群、商品聚类等场景的应用价值。全文注重实践性,所有计算步骤均可手动验证,适合初学者理解K-means的核心原理和实现方法。

2025-08-31 22:16:24 853

原创 【机器学习入门】4.2 相似性度量——聚类的“尺子”,帮你判断“像不像”

摘要: 相似性度量是聚类的核心工具,用于量化数据间的相似程度。文章介绍了4种常用方法: 欧氏距离:计算直线距离,适用于连续数值(如消费金额); 曼哈顿距离:模拟网格路径,适合地图坐标等场景; 余弦相似度:关注向量方向,用于高维数据(如文本聚类); 皮尔逊系数:衡量趋势一致性,适合用户偏好分析。 选择依据:数据类型(连续/高维)和业务需求(距离/趋势)。实操建议先手动计算,再用Python工具实现,结合聚类算法验证效果。相似性度量是机器学习的基础,后续将应用于K-Means等算法中。

2025-08-31 22:03:48 946

原创 【机器学习入门】4.1 聚类简介——从“物以类聚”看懂无监督分组的核心逻辑

摘要: 聚类是无监督学习的核心方法,通过"相似性分组"将数据自动归类(如按味道区分糖和盐)。其核心思想是:特征决定分组(选择不同特征,聚类结果不同),相似性是分组的依据(同簇对象特征相似,异簇对象相异)。与分类不同,聚类无需预设标签,而是自主发现数据规律。关键概念包括簇(相似对象集合)、簇中心(代表簇特征的点)、距离(衡量相似性的标准,如欧氏距离)。聚类广泛应用于电商用户分群、图像分割、金融风控等领域,帮助挖掘数据内在结构。学习建议从生活实例入手,逐步理解算法逻辑。(150字)

2025-08-30 21:11:36 926

原创 【机器学习实战】3.3 FP 树算法——从原理到代码,轻松搞定频繁项集挖掘

本文介绍了FP树算法在频繁项集挖掘中的优势与应用。相比传统Apriori算法需要多次扫描数据、生成大量候选项集的缺点,FP树通过两次扫描数据并构建前缀树结构,实现高效挖掘。文章详细解析了FP树的三个核心概念(频繁项集、前缀树、项头表),并逐步演示了构建FP树的过程。通过购物篮数据实例和Python代码实战,展示了如何从FP树中挖掘频繁项集。FP树凭借数据压缩和无候选项集的特点,特别适合处理电商推荐、零售优化等大规模数据场景。最后提供了常见问题解答,帮助读者深入理解算法原理和实际应用。

2025-08-30 21:07:56 856

原创 【机器学习入门】3.3 FP树算法——高效挖掘频繁项集的“树状神器”

FP树算法是一种高效的频繁项集挖掘方法,相比传统Apriori算法具有显著优势。文章通过购物篮案例详细解析了FP树的工作原理:首先通过两次扫描数据构建压缩的前缀树(FP树)和项头表,然后通过逆序遍历项头表挖掘频繁项集。FP树仅需扫描两次数据,避免了Apriori算法的多次扫描和候选项集生成问题,大大提高了处理大规模事务数据的效率。该方法适用于电商推荐、零售促销等需要挖掘频繁模式的场景。文章强调通过手动复现案例和工具实践来理解算法核心逻辑,为初学者提供了清晰的学习路径。

2025-08-30 20:57:27 609

原创 【机器学习入门】3.2 ALS算法——从评分矩阵到精准推荐的核心技术

本文介绍了ALS算法在推荐系统中的应用。ALS(交替最小二乘法)通过矩阵分解解决用户-物品评分矩阵稀疏性问题,能有效预测未评分项。文章从实际问题出发,用数独游戏类比ALS原理,详细拆解了矩阵分解、损失函数和交替优化过程,并通过电影推荐案例演示了算法实现步骤。ALS具有处理稀疏数据高效、计算成本低、可解释性强等优势,广泛应用于视频平台、电商、社交网络等场景。理解ALS算法是学习推荐系统的重要基础,为后续掌握更复杂算法奠定基础。

2025-08-29 19:11:37 1053

原创 【机器学习入门】3.1 关联分析——从“购物篮”到推荐系统的核心逻辑

关联分析是挖掘数据内在联系的技术,常用于购物篮分析,如"啤酒与尿不湿"的经典案例。核心概念包括关联规则(X→Y)、支持度(衡量规则出现频率)和置信度(衡量规则可靠性)。算法方面,FP算法通过构建FP树高效挖掘频繁项集,适用于海量交易数据分析;ALS算法则通过矩阵分解实现协同过滤推荐,解决稀疏矩阵问题。关联分析可应用于基于内容的直接推荐或基于协同的评分预测,是推荐系统的重要技术基础。理解关联分析的核心逻辑链,能帮助在实际场景中合理选择算法,挖掘有价值的数据关联规律。

2025-08-29 18:49:38 538

原创 【机器学习入门】2.4 偏差与方差——搞懂这对“冤家”,才会调优模型

本文通过生活化的"打靶"类比,深入浅出地讲解了机器学习中偏差和方差的概念。偏差反映模型未能捕捉数据核心规律的系统性误差(类似打靶偏离靶心),方差则体现模型对数据噪声敏感的随机性误差(类似子弹分散)。文章详细解析了"偏差-方差分解公式",指出泛化误差由偏差平方、方差和噪声组成,并阐述了模型复杂度与两者的反向关系:简单模型偏差大、方差小,复杂模型偏差小、方差大。针对不同情况,提供了调优建议:高偏差需增加模型复杂度或特征,高方差则可通过增加数据、正则化等方法解决。全文强调模

2025-08-28 21:42:51 816

原创 【机器学习入门】2.3 比较检验——用统计学告诉你“哪个模型更优”

【摘要】本文针对机器学习模型比较中的关键问题——如何科学判断模型性能差异是否显著,系统介绍了三种统计学检验方法。通过生活化类比(学生考试案例)阐明了直接比较测试误差的不可靠性,提出必须采用统计检验来区分真实差异与随机波动。文章依次讲解了:(1)二项检验(用于验证单个模型是否达标);(2)t检验(评估模型多次测试的稳定性);(3)交叉验证t检验(比较两个模型优劣的核心方法)。特别强调交叉验证t检验必须使用相同训练/测试集的重要前提,并给出三者的适用场景对比表。最后指出统计检验的本质是通过假设检验框架,用数据量

2025-08-28 21:32:28 888

原创 【机器学习入门】2.2 评估方法——手把手教你判断模型“真本事”

本文系统介绍了机器学习中评估模型泛化能力的三种核心方法:留出法、交叉验证法和自助法。留出法通过简单划分训练/测试集(通常7:3比例)实现快速验证,但需注意分层抽样和多次划分取平均;交叉验证法(如10折)通过多轮训练测试提高数据利用率,尤其适合中等规模数据集;自助法采用有放回抽样,是小样本场景的首选。文章强调训练/测试集必须互斥,并给出方法选择指南:大样本用留出法,中样本用交叉验证,小样本用自助法。这些评估方法是确保模型实用性的关键环节。

2025-08-27 21:17:09 738

原创 ARP 协议全解析:从原理到攻防实践

在局域网通信中,ARP(地址解析协议) 是连接 “IP 地址” 与 “MAC 地址” 的桥梁,支撑着设备间的高效通信。本文将从原理到应用,结合实际案例,系统解析 ARP 的工作机制、扩展特性及安全风险,帮助读者构建完整的知识体系。

2025-08-27 20:56:44 743

原创 【机器学习入门】2.1 经验误差(检验误差)——搞懂这篇,才知道你的模型好不好用

本文系统介绍了机器学习模型评估的核心概念与方法。首先解释了误差、错误率和精度等基础术语,强调泛化误差(模型在新数据上的表现)比训练误差更重要。然后详细讲解了两种评估方法:留出法(简单划分训练/测试集)和交叉验证法(k轮测试取平均),后者更稳定但计算成本更高。文章还介绍了比较模型性能的统计检验方法(二项检验、t检验等),并深入剖析了误差来源——偏差(欠拟合)和方差(过拟合)的权衡关系。最后总结了完整的评估逻辑链,为模型调优提供依据。这些内容是机器学习入门必须掌握的核心知识体系。

2025-08-26 12:32:45 999

原创 【机器学习入门】1.4 吃透这些基本术语,才算真正入门

本文通过"挑西瓜"的生活案例,形象解释了机器学习的基本术语。样本对应单个西瓜,特征如色泽、根蒂等是观察维度,特征值是其具体表现,标签是西瓜的好坏判断。数据集是样本集合,特征向量是样本的数学表达,特征空间是所有可能的样本组合。文章强调数据集需划分为训练集、验证集和测试集,以评估模型的泛化能力。最后整理了术语对照表,并解答了常见问题。这些基础概念是理解机器学习的关键,建议读者重点掌握。

2025-08-26 00:18:28 449

原创 【机器学习入门】1.2 初识机器学习:从数据到智能的认知之旅

摘要: 机器学习(ML)是一种让计算机从数据中自主归纳规律并解决实际问题的技术,其核心是通过数据训练模型,而非依赖预设规则。与人类学习类似,ML分为监督学习(带标签数据)、无监督学习(无标签数据)、半监督学习和强化学习(试错优化)四大范式。典型应用涵盖垃圾邮件过滤、商品推荐、医疗诊断等领域。完整ML项目流程包括问题定义、数据预处理、模型训练与评估等步骤,需避免过拟合并注重数据质量。初学者建议从基础算法(如决策树、线性回归)入手,结合实践项目理解原理,而非过度追求数学理论或直接学习深度学习。ML正推动金融、医

2025-08-25 21:50:40 590

原创 【机器学习入门】1.1 绪论:从数据到智能的认知革命

机器学习是人工智能的核心技术,通过从数据中学习规律完成特定任务。其发展经历了推理期、知识期、统计学习时代到如今的深度学习革命。机器学习任务主要分为监督学习、无监督学习和强化学习,评估指标因任务类型而异。作为交叉学科,机器学习与统计学、计算机科学等密切相关。应用场景涵盖计算机视觉、自然语言处理、金融和医疗等领域。初学者应避免追求完美数学基础或直接学习深度学习等误区,建议从Python编程和经典算法入手,通过实践项目逐步提升。未来机器学习将面临可解释性、公平性等挑战,需要技术创新和跨学科合作共同解决。

2025-08-25 21:36:26 777

原创 【ArcGIS Pro 全攻略】GIS 数据格式终极指南:从原理到实战,再也不纠结选哪种格式!

本文系统梳理了ArcGISPro中常用的GIS数据格式选择策略。针对矢量数据(Shapefile、FileGeodatabase、GeoPackage等)和栅格数据(GeoTIFF、EsriGrid等)两大类型,详细分析了各格式的优缺点、适用场景及转换技巧。文章还涵盖LiDAR、3D、CAD/BIM等专业格式,并通过城市规划、野外采集、Web地图开发三个典型场景演示了格式选择方案。最后提供了格式转换工具和常见问题解决方法,帮助用户根据项目需求(兼容性、功能复杂度、共享要求等)做出最优选择,提升工作效率和成果

2025-08-24 23:51:44 1316

原创 【GEE+Python 实战】用 Sentinel-2 监测 2024 年研究区 NDVI 变化(附完整源码与避坑指南)

NDVI(归一化植被指数)是监测植被生长状态的核心指标,其值范围在 [-1,1] 之间,正值越大代表植被覆盖度越高、生长越旺盛(负值通常为水体、岩石等非植被区域)。Sentinel-2 卫星(欧空局哥白尼计划)凭借 10m 高分辨率、多光谱波段(含红波段 B4 和近红外波段 B8)及 5 天重访周期,成为地表植被监测的理想数据源。本文以森林公园(经纬度:116.388768°E,39.988588°N)为研究区,通过 GEE(Google Earth Engine)的 JS 代码

2025-08-24 23:27:22 281

原创 2015-2018年咸海流域1km归一化植被指数8天合成数据集

该数据集包含2015-2018年咸海流域1km分辨率NDVI 8天合成数据,源自NASA MOD13A2产品第一波段(经比例因子0.0001处理)。数据采用WGS84坐标系的正弦投影,空间分辨率1000m×1000m,时间分辨率8天。数据量2.6GiB,格式为TIFF。项目由"泛第三极环境变化与绿色丝绸之路建设"支持,需引用干旱区生态与资源科学数据中心(https://data.dcxjegi.cn)并标注数据作者(刘铁、钱静)及DOI号。

2025-08-23 23:27:54 393

原创 新疆地州市1米分辨率土地覆盖图

中国首个 1 米分辨率全国尺度土地覆盖图 SinoLC-1,利用基于深度学习的框架和开放数据建立,包括全球土地覆盖(GLC)产品、OpenStreetMap(OSM)和谷歌地球影像。通过结合三个 10 米 GLC 产品和 OSM 数据生成了可靠的训练标签。这些训练标签和从谷歌地球衍生出的 1 米分辨率图像被用于训练所提出的框架。 该框架通过结合一个分辨率保持型骨干网络、一个弱监督模块和一个自监督损失函数,解决了因图像与标签分辨率不匹配而产生的标签噪声问题,从而无需人工标注即可自动优化高分辨率土地覆盖结果。

2025-08-23 23:22:08 813

原创 ArcGIS Pro 安装路径避坑指南:从崩溃根源到规范实操(附问题修复方案)

摘要: ArcGISPro安装路径中的中文或特殊字符会导致软件启动失败、功能崩溃及插件失效等问题。这些问题源于底层组件对Unicode编码的兼容性不足,典型表现为启动无响应、工具加载失败或数据损坏。解决方案包括:安装时使用英文路径(如D:\ProgramFiles\ArcGIS\Pro),避免修改默认层级结构;若已安装中文路径,需彻底卸载并重装。同时需确保系统区域设置为中文(非Unicode程序兼容),并预留50GB以上空间。其他专业软件(如AutoCAD、Python库)同样需遵循英文路径规范,以规避编码

2025-08-23 23:03:16 1342

原创 赶快收藏!GEE经典的使用案例一(Sentinel-2数据处理与合成)

本文详细介绍了使用Google Earth Engine (GEE)处理Sentinel-2数据的全流程,包括研究区准备、云概率去云、影像匹配和NDVI计算。以四川省为例,展示了如何筛选2021年5-10月数据,通过云概率阈值去云,并利用最大值合成法计算NDVI。关键步骤包括建立去云函数(阈值设为30%)、使用系统索引匹配影像与云数据、以及NDVI计算(B8和B4波段)。最终实现了植被指数的可视化分析,为区域植被监测提供了高效解决方案。代码可直接复用,适用于不同区域的研究需求。

2025-08-21 23:58:47 50

原创 【免费数据】2000-2022年全球1km分辨率牛、山羊、绵羊和马的牲畜数量栅格数据

全球畜牧业1公里分辨率空间分布数据集(2000-2022年)发布。该数据集利用52,883个普查多边形和678,266个数据点,结合随机森林模型和307个空间图层,生成了牛、山羊、绵羊和马四种牲畜的1公里分辨率全球分布图。数据经FAOSTAT校准,确保与各国统计数据一致。目前数据处于同行评审阶段,可通过早期访问计划获取。该数据集对研究畜牧业环境影响(土地利用、温室气体排放等)具有重要意义。数据格式为TIF,采用WGS_1984坐标系,已在Zenodo平台发布并标注引用格式。模型框架已在GitHub开源。

2025-08-21 17:23:26 890

原创 GEE 实现通用土壤流失方程(USLE)的完整方案 _后附完整代码

本文基于Google Earth Engine(GEE)平台,利用通用土壤流失方程(USLE)实现区域土壤侵蚀评估。USLE通过量化降雨侵蚀力(R)、土壤可蚀性(K)、地形因子(LS)、植被覆盖(C)和水土保持措施(P)五大驱动因子,计算土壤流失量(A)。研究详细介绍了各因子在GEE中的实现方法:使用CHIRPS降水数据计算R因子,基于OpenLandMap土壤数据获取K因子,利用SRTM DEM计算地形LS因子,通过Sentinel-2 NDVI估算C因子,结合MODIS土地覆盖数据确定P因子。最后将各因

2025-08-19 16:44:24 54

原创 CMIP6 气候模式核心特性解析

摘要:CMIP6气候模式是研究全球气候变化的重要工具。本文分析了五类主流模式的特点:加拿大CanESM5擅长多物理过程协同模拟,美国GFDL-ESM4精于碳循环研究,日本MIROC6强化多系统交互过程,日本MRI-ESM2-0突破气溶胶效应模拟,挪威NorESM2-LM专长北极气候研究。建议通过ESGF获取数据,并依据研究区域和变量选择合适模式。不同模式各有侧重,选择时需匹配研究目标与技术特性。

2025-08-18 23:51:38 1300

原创 首次生成长时间序列、高分辨率(30米)的中国国家重点保护野生动物栖息地分布图数据

本研究构建了1985-2022年中国720种陆地国家重点保护野生动物(NKPW)的30米分辨率栖息地范围(AOH)地图数据集。该数据集通过整合IUCN物种分布数据、栖息地偏好及高精度土地覆盖数据,填补了现有单年份、低分辨率AOH数据的不足。验证显示97.03%的物种AOH地图表现优于随机预测,平均点流行率达0.84。该成果为生物多样性监测、保护区规划、物种风险评估及生态系统修复提供了重要基础数据,同时支持企业ESG评估和政策制定。研究首次实现了中国关键物种长时序、高精度栖息地动态监测,具有重大科学和应用价值

2025-08-18 23:39:47 1218

原创 全球30米分辨率天然林和人工林分布栅格数据

同济大学肖跃龙团队于2024年2月发布全球30米分辨率天然林与人工林分布数据集。该数据集基于Landsat影像和随机森林分类算法,生成了2021年全球森林覆盖图(天然林为绿色,人工林为黄色),总体精度达85%。数据以5°×5°瓦片存储,格式为GeoTIFF(WGS_1984坐标系),总大小22.6GB。部分图块(300-400号)初期存在上传错误,已通过DOI:10.5281/zenodo.13759567补充。数据集仅处理含森林区域的图块,空缺区域可能表示无森林覆盖,数据可通过Zenodo平台获取。

2025-08-17 20:35:32 445

原创 2017–2024年中国10米/20米分辨率水稻种植分布数据集

摘要:本数据集提供2017-2024年中国23个省级行政区的水稻种植分布数据,包含单季稻和双季稻分类(GeoTIFF格式,WGS84坐标系)。5个省份分辨率为20米,其余为10米,基于Sentinel卫星数据和TWDTW方法生成。数据公开共享(7.99GB),使用需注明来源并引用相关文献(DOI:10.12199/nesdc.ecodb.rs.2025.012)。涉及学科包括遥感、生态学和地理学,研究成果需发送至国家生态科学数据中心备案。

2025-08-17 20:03:58 888

2015-2018年咸海流域1km归一化植被指数8天合成数据集

数据说明文件

2025-08-23

西北干旱区矢量边界.SHP

西北干旱区矢量边界矢量数据资源说明 一、数据概述 本资源为西北干旱区矢量边界数据,严格依据地理学界公认的西北干旱区划分标准构建。数据覆盖范围包括内蒙古高原西部、河西走廊、塔里木盆地、准噶尔盆地等典型干旱区域,完整呈现了我国西北干旱区的空间分布格局。 二、数据基本信息 数据格式:Shapefile(.shp),包含.shp、.shx、.dbf 等配套文件,支持 ArcGIS、QGIS 等主流 GIS 软件直接加载使用。 坐标系统:采用 WGS84 地理坐标系(EPSG:4326),便于与其他地理信息数据进行空间匹配和叠加分析。 精度说明:边界位置误差控制在 500 米以内,满足区域尺度的生态环境评估、水资源规划、气候变化研究等应用需求。 三、数据优势 权威性:边界划分参考了《中国自然地理》《中国干旱区地理》等权威著作,结合最新遥感影像校正,确保空间范围的科学性。 易用性:附带完整的元数据说明文件(.xml),包含数据来源、处理方法、字段含义等信息,新手用户可快速理解数据背景。 扩展性:数据保留了基础属性字段(如区域编码、面积等),用户可根据研究需求自行添加自定义属性,适配多样化分析场景。 四、适用场景 干旱区生态环境演变研究(如沙漠化监测、植被覆盖变化分析); 区域水资源管理与可持续利用评估; 气候变化对干旱区影响的模拟与预测; 国土空间规划中干旱区保护与开发策略制定。 五、使用说明 数据仅供学术研究、非商业用途使用,转载或二次发布请注明数据来源; 加载数据时若出现坐标偏移,可通过 GIS 软件的坐标转换工具进行校准; 如对数据精度有更高要求(如县域尺度分析),建议结合地方矢量数据进一步细化处理。 六、数据获取 下载链接包含完整的矢量数据包(压缩格式),解压后即可直接使用。如需配套的遥感影像底图或辅助分析工具,可在评论区留言获取相关资源推荐。

2025-07-24

ParFlow 模型文件

ParFlow是一个开源的、面向对象的、并行的流域尺度模型。它包括完全整合的陆地流,有能力模拟复杂的地形、地质和非均质性以及包括土地能源预算、生物地球化学和雪(通过CLM)的陆地表面过程。它可以运行在多个平台上。ParFlow是一个长期的、多机构的开发历史的结果,现在是CSM、LLNL、uni波恩和UCB之间的合作。ParFlow与中尺度、气象代码ARPS和NCAR代码WRF结合在一起。

2025-07-24

MODFLOW模型资源分享

MODFLOW是三维有限差分地下水模型,它使用模块化结构,使得它可以很容易的修改,以适应特定的应用程序代码。MODFLOW-2000模拟不规则水流系统中的稳定的与非稳定的水流,蓄水层可以密闭或者不密闭,或者是两者的组合,在外部压力下流动,比如流向井中,面补给,蒸发量,流向排水渠,通过河床流动,这些都可以模拟。除了模拟地下水流,还扩展了一些相关功能,例如泥沙运输等。

2025-07-24

代码集成源代码数据分享

代码集成源代码数据分享

2025-04-27

Python 实战项目:NumPy-ndarray(后附完整代码与逐步拆解)

Python 实战项目:NumPy-ndarray(后附完整代码与逐步拆解)

2025-04-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除