人工智能之机器学习算法体系汇总

  • 监督学习 Supervised learning

  • 人工神经网络 Artificial neural network

  • 自动编码器 Autoencoder

  • 反向传播 Backpropagation

  • 玻尔兹曼机 Boltzmann machine

  • 卷积神经网络 Convolutional neural network

  • Hopfield网络 Hopfield network

  • 多层感知器 Multilayer perceptron

  • 径向基函数网络(RBFN) Radial basis function network(RBFN)

  • 受限玻尔兹曼机 Restricted Boltzmann machine

  • 回归神经网络(RNN) Recurrent neural network(RNN)

  • 自组织映射(SOM) Self-organizing map(SOM)

  • 尖峰神经网络 Spiking neural network


  • 贝叶斯 Bayesian

  • 朴素贝叶斯 Naive Bayes

  • 高斯贝叶斯 Gaussian Naive Bayes

  • 多项朴素贝叶斯 Multinomial Naive Bayes

  • 平均一依赖性评估(AODE) Averaged One-Dependence Estimators(AODE)

  • 贝叶斯信念网络(BNN) Bayesian Belief Network(BBN)

  • 贝叶斯网络(BN) Bayesian Network(BN)


  • 决策树 Decision Tree

  • 分类和回归树(CART) Classification and regression tree (CART)

  • 迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)

  • C4.5算法 C4.5 algorithm

  • C5.0算法 C5.0 algorithm

  • 卡方自动交互检测(CHAID) Chi-squared Automatic Interaction Detection(CHAID)

  • 决策残端 Decision stump

  • ID3算法 ID3 algorithm

  • 随机森林 Random forest

  • SLIQ


  • 线性分类 Linear classifier

  • Fisher的线性判别 Fisher's linear discriminant

  • 线性回归 Linear regression

  • Logistic回归 Logistic regression

  • 多项Logistic回归 Multinomial logistic regression

  • 朴素贝叶斯分类器 Naive Bayes classifier

  • 感知 Perceptron

  • 支持向量机 Support vector machine


  • 无监督学习 Unsupervised learning

  • 人工神经网络 Artificial neural network

  • 对抗生成网络

  • 前馈神经网络 Feedforward neurral network

           极端学习机 Extreme learning machine

  • 逻辑学习机 Logic learning machine

  • 自组织映射 Self-organizing map


  • 关联规则学习 Association rule learning

  • 先验算法 Apriori algorithm

  • Eclat算法 Eclat algorithm

  • FP-growth算法 FP-growth algorithm


  • 分层聚类 Hierarchical clustering

  • 单连锁聚类 Single-linkage clustering

  • 概念聚类 Conceptual clustering


  • 聚类分析 Cluster analysis

  • BIRCH

  • DBSCAN

  • 期望最大化(EM) Expectation-maximization(EM)

  • 模糊聚类 Fuzzy clustering

  • K-means算法 K-means algorithm

  • k-均值聚类 K-means clustering

  • k-位数 K-medians

  • 平均移 Mean-shift

  • OPTICS算法 OPTICS algorithm


  • 异常检测 Anomaly detection

  • k-最近邻算法(K-NN) k-nearest neighbors classification(K-NN)

  • 局部异常因子 Local outlier factor


  • 半监督学习 Semi-supervised learning

  • 生成模型 Generative models

  • 低密度分离 Low-density separation

  • 基于图形的方法 Graph-based methods

  • 联合训练 Co-training


  • 强化学习 Reinforcement learning

  • 时间差分学习 Temporal difference learning

  • Q学习 Q-learning

  • 学习自动 Learning Automata

  • 状态-行动-回馈-状态-行动(SARSA) State-Action-Reward-State-Action(SARSA)


  • 深度学习 Deep learning

  • 深度信念网络 Deep belief machines

  • 深度卷积神经网络 Deep Convolutional neural networks

  • 深度递归神经网络 Deep Recurrent neural networks

  • 分层时间记忆 Hierarchical temporal memory

  • 深度玻尔兹曼机(DBM) Deep Boltzmann Machine(DBM)

  • 堆叠自动编码器 Stacked Boltzmann Machine

  • 生成式对抗网络 Generative adversarial networks


  • 迁移学习 Transfer learning

  • 传递式迁移学习 Transitive Transfer Learning


  • 其他

  • 集成学习算法

  • Bootstrap aggregating (Bagging)

  • AdaBoost

  • 梯度提升机(GBM) Gradient boosting machine(GBM)

  • 梯度提升决策树(GBRT) Gradient boosted decision tree(GBRT)


  • 降维

  • 主成分分析(PCA) Principal component analysis(PCA)

  • 主成分回归(PCR) Principal component regression(PCR)

  • 因子分析 Factor analysis


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值