@创建于:2022.05.27
@修改于:2022.05.27
sig,全称为significance,意为显著性”,sig值包含p值。如果P值0.01<P<0.05,则差异显著,如果P<0.01,则差异极显著。
T值,所展现的数值是对回归参数的显著性检验值,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。T检验为四大差异性统计分析方法之一,是基于t分布的统计理论,处理两个总体间的计量资料之间的差异。
P值用来判定假设检验结果的一个参数,当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明发生情况的概率很小。
F值是F检验的统计量,也就是组间和组内的离差平方和与自由度的比值,显著性就是与F统计量对应的显著性水平,0.001说明拒绝原假设,即单因素的不同水平之间有显著差异。
机器学习中的数学(八):卡方分布(Chi-squared Distribution) t分布(T Distribution)F分布(T Distribution)