python
文章平均质量分 58
Python语言、技巧、工具、问题
条件漫步
这个作者很懒,什么都没留下…
展开
-
pandas DataFrame top N rows,某列值最大的N行
pandas.DataFrame nsmallest 和 nlargest 的使用原创 2023-04-03 14:47:48 · 644 阅读 · 0 评论 -
matplotlib报错:AttributeError: ‘AxesSubplot‘ object has no attribute ‘rowNum‘
matplotlib运行报错:AttributeError: 'AxesSubplot' objeAttributeError: ‘AxesSubplot’ object has no attribute ‘rowNum’在matplotlib3.3.4下可以运行,但是matplotlib3.4.3就报错。版本问题,自己调整版本吧。参考资料Python报错:AttributeError: ‘AxesSubplot‘ object has no attribute ‘bar_label‘...原创 2021-10-29 21:24:35 · 1594 阅读 · 0 评论 -
Pandas DataFrame: groupby filter/query的使用
2、filter,可以对分组进行操作3、query,不能对分组操作4、参考链接pandas.DataFrame.filterPandas query 的用法, df.query原创 2022-07-02 22:28:33 · 2433 阅读 · 0 评论 -
Pandas DataFrame: groupby agg的使用
groupby 聚合函数 匿名函数 以后NaN值的处理4、分组后根据条件筛选5、有NaN值的处理df2.groupby(‘books’).apply(lambda x: x[‘num’]/x[‘num’].max()).reset_index()df2n = df2.groupby(‘books’)[‘num’].apply(lambda x: x/x.max())df2nPandas教程 | 超好用的Groupby用法详解DataFrame进行数据分组运算并筛............原创 2022-07-01 23:39:32 · 2275 阅读 · 0 评论 -
Pandas DataFrame: 行列转换、一行生成多行,多行合并一行
用到pandas的melt方法。上面丢掉了班级,如何增加班级呢?pandas行转列、列转行、以及一行生成多行pandas如何进行优雅的列转行、行转列?Pandas中Dataframe行转列原创 2022-07-01 12:00:33 · 6986 阅读 · 2 评论 -
python 读取 Oracle 的数据
@创建于:2022.04.29@修改于:2022.04.29文章目录1、安装包2、读取代码段3、官网推荐4、参考资料先安装cx_Oracle模块,然后进行读取。1、安装包pip install cx_Oracle# 下面是建议的conda install cx_Oracle2、读取代码段 def connct_oracle(self): ''' 从公司紫光云读取数据。 :return: ''' prin原创 2022-04-29 10:53:23 · 3615 阅读 · 0 评论 -
Timestamp 或 DatetimeIndex 可以访问 日期/时间属性
@创建于:2022.01.28@修改于:2022.01.28详见连接:Pandas 时间序列 - 日期时间索引原创 2022-01-28 21:22:05 · 795 阅读 · 0 评论 -
Python安装包下载方式
@创建于:2022.01.26@修改于:2022.01.26文章目录1、PyPI下载2、镜像渠道3、如何解决包之间的依赖服务器是离线的,只能离线安装python的开发包。特定版本号的安装包的下载方式如下。1、PyPI下载(1)官网 https://pypi.org/(2)搜索包名称,如pandas,点击该包的任意一个版本(一般是最新版本)(3)进入history页面https://pypi.org/project/pandas/#history找到对应的版本号(4)点击Downlo原创 2022-01-26 22:39:01 · 4823 阅读 · 0 评论 -
DataFrame 缺失值 分组填充
创建于:2021.12.01分享几个连接:如何根据分组平均值填充缺失值?熊猫:通过每组平均值填充缺失值pandas每天一题-题目18:分组填充缺失值原创 2021-12-01 17:29:18 · 1715 阅读 · 1 评论 -
seaborn histplot box
@创建于:20211126seaborn.histplothttps://seaborn.pydata.org/generated/seaborn.histplot.htmlseaborn.histplot(中文)https://www.osgeo.cn/seaborn/generated/seaborn.histplot.htmlseaborn.boxplothttp://seaborn.pydata.org/generated/seaborn.boxplot.htmlPlotting wi原创 2021-11-26 22:22:01 · 902 阅读 · 0 评论 -
Pandas:to_excel 在原Excel表 追加写入数据
@创建于:20211118文章目录1、直接写入2、直接写入3、参考链接1、直接写入如果只是想把一个DataFrame保存为单独的一个Excel文件,那么直接写:df_data.to_excel('xxx.excel', 'sheet1', index=False)保存为单个Excel文件和这个文件中的单个表。如果先前存在有同名的Excel文件,这样做会把之前的Excel文件覆盖掉。2、直接写入if not os.path.exists(file_path): df_data_s原创 2021-11-18 16:16:57 · 16549 阅读 · 2 评论 -
计算两个日期相差 几年几个月几日
@创建于:20211117文章目录1、背景2、代码示例2.1 代码2.1 输出结果3、结果讨论1、背景经常遇到两个日期之间相差多个年,多少月,多少日。方式1:使用datetimedatetime只能计算日期间隔了多少天,换成年,需要除以常数365.25;换成月则需要除以30.42。这样计算不太准确。方式2:使用np.timedelta64()函数方式3:使用dateutil的relativedeltadateutil则可以计算日期间隔了几年几月几日,是一种比较准确的方法。2、代码示例2.原创 2021-11-17 22:30:44 · 2389 阅读 · 0 评论 -
pd.read_csv 读取csv数据:‘utf-8‘ codec can‘t decode byte 0x8c in position 18:
@创建于:20211103@修改于:202111031、错误信息pd.read_csv 读取csv数据时候,报错pd.read_csv(filepath_or_buffer=file_path, sep=sep, encoding=encoding)2、尝试的方案2.1 更改编码方式尝试的编码有:utf-8gbkutf-16utf-8-BOMgb18030unicode_escape我的问题,无法解决!2.2 更改系统配置win10, pycharm环境下file —>原创 2021-11-03 10:54:58 · 2319 阅读 · 0 评论 -
DataFrame 的 groupby()使用
@创建于:20210813@修改于:20210813df.groupby([Column1,Column2])[Condition1].agg({Column3:“mean”,Column4:“sum”}).reset_index()1、【易百教程】Pandas分组(GroupBy)# 语法顺序和逻辑执行顺序df.groupby([Column1,Column2])[Condition1].agg({Column3: "mean",Column4:"sum"}).reset_index()原创 2021-08-13 15:09:14 · 6389 阅读 · 0 评论 -
Pandas DataFrame的多重索引 MultiIndex
@创建于:20210813@修改于:202108131、Pandas进阶之DataFrame多级索引一、创建多级索引二、检索多级索引三、更改索引的层级四、多级索引的值排序(sort_index)五、多级索引汇总统计六、多级索引轴向转换七、多级索引转换单级索引2、DataFrame多重索引1、多重索引2、Series和DataFrame的转换3、DataFrame重置索引3、Python–MultiIndex多层次索引学习入门级demo学习MultiIndex创建的方式多层索原创 2021-08-13 10:00:50 · 4378 阅读 · 0 评论 -
matplotlib 和 DataFrame plot画图 详解,刨根问底/plot/hist/box/bar/stack/groupby后unstack()
@创建于:20210716@更新于:20210716推荐推荐!dataframe画图,看着一篇就够了。Pandas高级教程之:plot画图详解原创 2021-07-16 16:41:43 · 1455 阅读 · 0 评论 -
Python pandas dataframe 日期时间列中提取月份和年份
@创建于:20210716@修改于:20210716文章目录1、pandas.Series.dt.year() 和 pandas.Series.dt.month() 方法提取月份和年份2、strftime() 方法提取年份和月份3、pandas.DatetimeIndex.month 和 pandas.DatetimeIndex.year 提取年份和月份4、参考资料1、pandas.Series.dt.year() 和 pandas.Series.dt.month() 方法提取月份和年份应用于 Da转载 2021-07-16 15:14:33 · 64041 阅读 · 2 评论 -
Python pandas dataframe 时间序列 date_range()方法使用技巧
@创建于:20210715@修改于:20210715文章目录1 方法及参数介绍2 例子3 参考链接pandas.date_range()方法,用于生成一个固定频率的DatetimeIndex时间索引。1 方法及参数介绍pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs) source常用参数为start原创 2021-07-15 19:18:46 · 5184 阅读 · 0 评论 -
利用python,创建时序数据
@创建于:20210715@修改于:20210715最近在做时序预测,不想把精力放在各种时序数据的处理上,决定自己生成一些时间序列数据。供研究用。# -*- coding:UTF-8 -*- # datetime:2021/7/15 10:22# software: PyCharm""" 文件说明: 创建时序数据:包括基线、趋势、周期(2种) """import numpy as npimport pandas as pdimport randomimport matplot原创 2021-07-15 18:42:27 · 1220 阅读 · 0 评论 -
python3魔术方法:__init__、__str__、__getitem__、__len__
@创建于:20210707@修改于:20210707文章目录1、魔术方法介绍1.1 初始化方法__init__1.2 __str__1.3 __getitem__1.4 __len__2、例子3、参考资料魔术方法就是一个类/对象中的方法,和普通方法唯一的不同时,普通方法需要调用!而魔术方法是在特定时刻自动触发。1、魔术方法介绍1.1 初始化方法__init__触发时机:初始化对象时触发(不是实例化触发,但是和实例化在一个操作中)参数:至少有一个self,接收对象返回值:无作用:初始化对象的原创 2021-07-07 18:02:19 · 584 阅读 · 0 评论 -
ValueError: Falling back to the ‘python‘ engine because the separator encoded in utf-8 is > 1 char l
@创建于:20210407@修改于:202104071、问题描述python pandas 读csv文件遇到如下报错:ValueError: Falling back to the ‘python’ engine because the separator encoded in utf-8 is > 1 char long, and the ‘c’ engine does not support such separators, but this causes ‘low_memory’ to原创 2021-04-07 11:09:12 · 653 阅读 · 1 评论 -
python 中 statsmodels模块的 API接口
@创建于:20210315@修改于:20210315文章目录1、statsmodels API2、statsmodels.api3、statsmodels.tsa.api4、statsmodels.formula.api5、参考资料1、statsmodels APIstatsmodels是Pandas生态系统(ecosystem)下Statistics and Machine Learning下的一个库。主要是偏传统频率学派统计方法,具体有下面三大主题组成。statsmodels.api:横截面模原创 2021-03-15 17:07:11 · 14249 阅读 · 2 评论 -
DataFrame加权滑窗rolling使用,win_type=‘triang‘详解
@创建于:20210312@修改于:20210312文章目录1、背景2、rolling介绍2.1 DataFrame rolling API介绍2.2 参数介绍3、例子3.1 window例子3.2 win_type=‘triang’例子4、参考链接1、背景2、rolling介绍2.1 DataFrame rolling API介绍此处对应的pandas 版本号是 1.2.2,pandas.DataFrame.rollingDataFrame.rolling(window, min_perio原创 2021-03-12 15:15:29 · 3674 阅读 · 2 评论 -
DataFrame指数权重窗口ewm使用: DataFrame.ewm([com, span, halflife, …])
@创建于:20210311@修改于:20210311文章目录1、背景2、ewm介绍2.1 DataFrame ewm API接口介绍2.2 参数介绍3、例子3.1 必选参数比较3.2 adjust参数比较3.2 ignore_na参数比较3.2 times参数使用4、参考资料1、背景DataFrame下的指数权重滑窗算法在时间序列预测中较常用。本文对其的使用方法、理论内容和具体例子进行阐述,以方便使用者最快速度掌握。2、ewm介绍2.1 DataFrame ewm API接口介绍此处对应的原创 2021-03-11 17:10:41 · 10468 阅读 · 0 评论 -
转载:【python】Pandas中DataFrame基本函数整理(全)
【python】Pandas中DataFrame基本函数整理(全)版本Pandas 1.2.2中,基本API官网查询:API reference原创 2021-03-01 14:28:20 · 246 阅读 · 0 评论 -
python pandas DataFrame.info() 打印到文件中
@创建于:2021.01.07@修改于:2021.01.07文章目录1、背景2、info()介绍3、解决办法4、参考链接1、背景需要把dataframe.info()的信息输出到指定文件中。而不是显示在平面上。2、info()介绍Pandas dataframe.info()函数用于获取 DataFrame 的简要摘要。在对数据进行探索性分析时,可以快速浏览数据集,带来极大的便利。(1)用法DataFrame.info(verbose=None, buf=None, max_cols=Non原创 2021-01-07 14:29:16 · 2046 阅读 · 1 评论 -
利用python实现工程文件 树形目录输出
@创建于:20201211@修改于:202012111、代码实现# -*- coding:UTF-8 -*- # author:# contact: # datetime:# software: PyCharm""" 文件说明: 打印工程目录文件,参考链接: https://blog.csdn.net/albertsh/article/details/77886876 """import osimport os.pathdef dfs_showdir(path, de原创 2020-12-11 10:30:14 · 3584 阅读 · 0 评论 -
Python3.6 Error: ModuleNotFoundError: No module named ‘src‘
创建于:20201204修改于:20201204文章目录1、背景2、尝试的方式1、背景在PyCharm下的Terminal运行文件或者模块。出现了错误:ModuleNotFoundError: No module named ‘src’2、尝试的方式(1)增加系统路径(测试成功)sys.path.insert(0, ‘…/’)import sys, ossys.path.insert(0, '../')from setup import LOGFILE, NOWfrom src.mod原创 2020-12-04 15:52:47 · 12963 阅读 · 1 评论 -
DataFrame的merge函数验证
@创建于:20201106文章目录1、背景2、代码及结果3、扩展资料1、背景(1)计划实际测试merge函数在联合唯一键下的简单合并。(2)实际测试merge后的对象和被合并对象同名情况的输出是否被覆盖。2、代码及结果import pandas as pddf1 = pd.DataFrame({'key1':list('abbcc'), 'key2':list('xxyxy'), 'data1':range(1,6,1)})df1df2 = pd.DataFrame({'key1':l原创 2020-11-06 18:34:40 · 767 阅读 · 1 评论 -
dataframe列名获取、删除列、创建对应的数据库表
创建于:20201026修改于:20201026文章目录1. 获取dataframe列名2. 删除当前dataframe的所有列3. 由dataframe的列名,创建合适的数据库表1. 获取dataframe列名print("===1:", type(df.columns), df.columns)print("===2:", type(df.columns.values), df.columns.values)print("===3:", type(df.columns.values.toli原创 2020-10-26 14:57:30 · 837 阅读 · 0 评论 -
Python pandas.DataFrame 找出含有空值的特定行和列
创建于:20200812修改于:20200812文章目录1、找出所有含有空值的行2、找出含有空值的特定行和列3、代码实例4、为什么加转置5、参考链接1、找出所有含有空值的行DataFrame[DataFrame.isnull().T.any()]2、找出含有空值的特定行和列DataFrame[DataFrame[[‘column3’,‘column4’]].isnull().T.any()][[‘column3’,‘column4’]]3、代码实例import pandas as pdim原创 2020-08-12 11:23:53 · 41691 阅读 · 6 评论 -
Win10,64bit系统,python连接hive,安装impyla依赖包
创建于:20200802修改于:20200802文章目录1、环境介绍2、基本安装过程3、报错信息及解决办法4、python链接hive代码5、参考链接1、环境介绍win10 64bitpython3.6.6 (conda建立的虚拟环境)2、基本安装过程下面是基本的安装过程,具体参照官网:cloudera/impyla我在PyCharm的Terminal下安装的。如pip install sixsixbit_arraythriftpy#这样不依赖Microsoft Visual C+原创 2020-08-02 15:43:01 · 561 阅读 · 0 评论 -
安装 scrapyd, 提示Requirement already satisfied
安装 scrapyd, 提示Requirement already satisfied用下面的方法,安装成功。不知道为啥pip install -i https://pypi.doubanio.com/simple/ --trusted-host pypi.doubanio.com --target=C:\ProgramData\Anaconda3\Lib\site-packages s...原创 2020-03-24 18:18:00 · 903 阅读 · 0 评论 -
win10系统:在Anaconda下安装Python包,如wordcloud
创建日期:2020.03.02修改日期:2020.03.021、背景使用Jupter notebook 运行程序,需要安装wordcloud。2、安装wordcloud(1)使用 管理员 模式打开,anaconda prompt(2)运行下面代码conda install -c conda-forge wordcloud(3)运行过程如下Solving environment:...原创 2020-03-02 16:54:05 · 852 阅读 · 1 评论 -
Navicat数据库中表结构相似的两张表内容复制
Navicat数据库中表结构相似的两张表内容复制把t_data中的数据复制到t_info。t_info比t_data表多最后的三个表字段(key_w、key_s、key_e)。(1)选中t_data表中要复制的一行或者多行数据内容;(2)右击–>复制为–>Insert语句;(3)点击工具栏“查询”按钮–>新建查询;(4)粘贴到空白处;(5)替换表名t_data为t_i...原创 2020-01-16 10:34:29 · 858 阅读 · 0 评论 -
Python中 SQLAlchemy模块 分组统计、排序、按照时间字段统计、高级查询
@创建日期:2020.03.31@修改日期:2020.03.31文章目录1. 字段分组、统计和排序2. 按DateTime字段的年或月进行group_by查询3. query.filter()的常用方法4. 高级查询1. 字段分组、统计和排序在调用func.count()函数时,count选择没有Null的字段,以选择id为最好,其次为常量值(func.count(1))。如果选择fu...原创 2020-03-31 20:09:20 · 6460 阅读 · 0 评论 -
[Flask]sqlalchemy使用count()函数,实现快速查询
@创建于:2020.03.28@修改于:2020.03.28文章目录1. 背景2. 解决办法对比2.1 原代码2.2 优化后3. 参考连接1. 背景在python flask中,用sql语句进行 查询,如何做到前端请求数据后快速返回?如:在使用flask-sqlalchemy对一个千万级别表进行count操作时,出现了耗时严重、内存飙升的问题。2. 解决办法对比2.1 原代码说明:...转载 2020-03-28 21:46:26 · 13851 阅读 · 2 评论 -
sqlalchemy对数据库内容模糊检索
文章目录1. 背景2. python实现2.1 代码片段2.2 结果查看3. 参考连接1. 背景用户在前端输入内容,按照空格后其他字符隔开关键字。在数据库中多个字段查询,若有匹配的则返回查询结果。涉及到:字符串正则匹配、sql循环搜索多个关键字、数据库模糊查找。@python3.5环境。2. python实现2.1 代码片段# 输入user_input = 'Odds Better ...原创 2020-03-28 18:02:06 · 1961 阅读 · 0 评论 -
sqlalchemy.exc.ArgumentError: Textual SQL expression '' should be explicitly declared as text('')
文章目录1. 背景与问题2. 解决办法3. 参考连接1. 背景与问题安装了scrapyd环境,编译器为python3.5。用db.session.query.filter()语句进行数据库查询操作。之前没有报错的代码,现在报错了。报错信息sqlalchemy.exc.ArgumentError: Textual SQL expression ‘’ should be explicitly...原创 2020-03-28 13:28:04 · 11540 阅读 · 0 评论 -
file.read() 使用完后,file对象的大小变成0
file.read() 使用完后,file对象的大小变成0。我想用file.read()获取文件大小,用来判断是否大于某个值(如16M),如果小于16M,我就选择上传文件。然而上传后文件大小就变成0了。这个怎么处理呢?或者用python的其他什么方法可以实现我的需求呢?有作者写道:使用s = file.read()之后,就可以一直使用s作为内容值。file.read()只能读取一次,如...原创 2020-03-25 14:49:59 · 834 阅读 · 2 评论