Pandas DataFrame: groupby filter/query的使用

@创建于:2022.07.02
@修改于:2022.07.02

1、构建样例数据

import pandas as pd
import numpy as np
df = pd.DataFrame({'books':['book_1', 'book_2', 'book_2', 'book_1', 'book_2', 'book_3'],
                   'price':[10, 20, 30, 30, 20, 10],
                   'num':[4, 6, 2, 4, 2, 8]})

    books 	price 	num
0 	book_1 	10 	4
1 	book_2 	20 	6
2 	book_2 	30 	2
3 	book_1 	30 	4
4 	book_2 	20 	2
5 	book_3 	10 	8



df2 = pd.DataFrame({'books':['book_1', 'book_1', 'book_2', 'book_2', 'book_2', 'book_3', 'book_4'],
                   'price':[10, 20, 10, 30, None,10, np.NaN],
                   'num':[2, 4, np.NaN, 2, 4, 8, 2]})
                  
 	books 	price 	num
0 	book_1 	10.0 	2.0
1 	book_1 	20.0 	4.0
2 	book_2 	10.0 	NaN
3 	book_2 	30.0 	2.0
4 	book_2 	NaN 	4.0
5 	book_3 	10.0 	8.0
6 	book_4 	NaN 	2.0

2、filter,可以对分组进行操作

# 根据行情条数筛选
df.groupby('books').filter(lambda x: len(x)>1)

	books 	price 	num
0 	book_1 	10 	4
1 	book_2 	20 	6
2 	book_2 	30 	2
3 	book_1 	30 	4
4 	book_2 	20 	2



# 根据行情条数筛选
df.groupby('books').filter(lambda x: x['num'].sum()>8)

 	books 	price 	num
1 	book_2 	20 	6
2 	book_2 	30 	2
4 	book_2 	20 	2

3、query,不能对分组操作

df2.query('price > 10 and num < 5')

    books 	price 	num
1 	book_1 	20.0 	4.0
3 	book_2 	30.0 	2.0

4、参考链接

pandas.DataFrame.filter
Pandas query 的用法, df.query

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值