这次范例相对比较简单,是涉及到形态学操作的问题,原理也是比较简单,学习起来比较轻松,大家看完这次的范例分析就可以明白到底图像的腐蚀和膨胀是怎么回事了。
1、原理
简单来讲,形态学操作就是基于形状的一系列图像处理操作。通过将 结构元素 作用于输入图像来产生输出图像。
最基本的形态学操作有二:腐蚀与膨胀(Erosion 与 Dilation)。 他们的运用广泛:
消除噪声
分割(isolate)独立的图像元素,以及连接(join)相邻的元素。
寻找图像中的明显的极大值区域或极小值区域。
通过以下图像,我们简要来讨论一下膨胀与腐蚀操作,膨胀是取像素值高的点,腐蚀相反,是取像素值低的点。
图1、原图
①、膨胀
此操作将图像 A 与任意形状的内核 (B),通常为正方形或圆形,进行卷积。
内核 B 有一个可定义的 锚点, 通常定义为内核中心点。
进行膨胀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” (因此有了术语膨胀 dilation )。对上图采用膨胀操作我们得到:
图2、膨胀图片
与上面原图比较,可以明显的看到图像字母变粗了,膨胀了。
②、腐蚀
腐蚀在形态学操作家族里是膨胀操作的孪生姐妹。它提取的是内核覆盖下的相素最小值。
进行腐蚀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最小相素值提取,并代替锚点位置的相素。
以与膨胀相同的图像作为样本,我们使用腐蚀操作。如下图:
图3、腐蚀图片
与上面原图比较,可以明显的看到图像字母变细了,腐蚀了。
现在,我们编写一些代码,在窗口中再加上trackbar控件对图像进行操作,这样可以更直观的看到图像的变化。
2、代码实现
#include "stdafx.h"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
using namespace cv;
/// 全局变量
Mat src, erosion_dst, dilation_dst;
int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;
/** Function Headers */
void Erosion( int, void* );
void Dilation( int, void* );
/** @function main */
int main( int argc, char** argv )
{
/// Load 图像
src = imread( "LinuxLogo.jpg" );
if( !src.data )
{ return -1; }
/// 创建显示窗口
namedWindow( "Erosion Demo", CV_WINDOW_AUTOSIZE );
namedWindow( "Dilation Demo", CV_WINDOW_AUTOSIZE );
cvMoveWindow( "Dilation Demo", src.cols, 0 );
/// 创建腐蚀 Trackbar
createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Erosion Demo",
&erosion_elem, max_elem,
Erosion );
createTrackbar( "Kernel size:\n 2n +1", "Erosion Demo",
&erosion_size, max_kernel_size,
Erosion );
/// 创建膨胀 Trackbar
createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Dilation Demo",
&dilation_elem, max_elem,
Dilation );
createTrackbar( "Kernel size:\n 2n +1", "Dilation Demo",
&dilation_size, max_kernel_size,
Dilation );
/// Default start
Erosion( 0, 0 );
Dilation( 0, 0 );
waitKey(0);
return 0;
}
/** &