leetcode算法常见解题思路--二叉树篇

1.填充二叉树节点的右侧指针

图片

 二叉树的问题难点在于,如何把题目的要求细化成每个节点需要做的事情,但是如果只依赖一个节点的话,肯定是没办法连接「跨父节点」的两个相邻节点的,那么,我们的做法就是增加函数参数,一个节点做不到,我们就给他安排两个节点,「将每一层二叉树节点连接起来」可以细化成「将每两个相邻节点都连接起来]。

// 主函数
Node connect(Node root) {
    if (root == null) return null;
    connectTwoNode(root.left, root.right);
    return root;
}

// 定义:输入两个节点,将它俩连接起来
void connectTwoNode(Node node1, Node node2) {
    if (node1 == null || node2 == null) {
        return;
    }
    /**** 前序遍历位置 ****/
    // 将传入的两个节点连接
    node1.next = node2;

    // 连接相同父节点的两个子节点
    connectTwoNode(node1.left, node1.right);
    connectTwoNode(node2.left, node2.right);
    // 连接跨越父节点的两个子节点
    connectTwoNode(node1.right, node2.left);
}

2.将二叉树展开为链表

递归先将左右子树拉平, 然后通过遍历找到右子树的尾指针,再将左子树的链表接到右子树下面。

3、判断BST的合法性

此处有坑,如果直接使用单参数的递归,无法保证中间节点大于左BST的全部值,,对于中间节点的右边BST也同理,

boolean isValidBST(TreeNode root) {
    if (root == null) return true;
    if (root.left != null && root.val <= root.left.val)
        return false;
    if (root.right != null && root.val >= root.right.val)
        return false;

    return isValidBST(root.left)
        && isValidBST(root.right);
}

所以要给递归函数传递额外参数,将这种约束传递给子树的所有节点,这也是二叉树算法的一个小技巧。

boolean isValidBST(TreeNode root) {
    return isValidBST(root, null, null);
}

/* 限定以 root 为根的子树节点必须满足 max.val > root.val > min.val */
boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
    // base case
    if (root == null) return true;
    // 若 root.val 不符合 max 和 min 的限制,说明不是合法 BST
    if (min != null && root.val <= min.val) return false;
    if (max != null && root.val >= max.val) return false;
    // 限定左子树的最大值是 root.val,右子树的最小值是 root.val
    return isValidBST(root.left, min, root) 
        && isValidBST(root.right, root, max);
}

4.在BST中搜索、插入、删除一个数框架

先说针对 BST 的遍历框架

void BST(TreeNode root, int target) {
    if (root.val == target)
        // 找到目标,做点什么
    if (root.val < target) 
        BST(root.right, target);
    if (root.val > target)
        BST(root.left, target);
}

在BST中插入一个数:

TreeNode insertIntoBST(TreeNode root, int val) {
    // 找到空位置插入新节点
    if (root == null) return new TreeNode(val);
    // if (root.val == val)
    //     BST 中一般不会插入已存在元素
    if (root.val < val) 
        root.right = insertIntoBST(root.right, val);
    if (root.val > val) 
        root.left = insertIntoBST(root.left, val);
    return root;
}

在BST中删除一个数:

总体逻辑是先找到这个数然后分三种情况进行判断

1.这个数既没有有左子树也没有右边子树

直接删除该节点 

2.这个数只有左子树

那么将该数的左子树返回给父亲节点进行连接

3 .这个数 只有右子树 

那么将该数的右子树返回给父亲节点进行连接

4.这个数既有左子树又有右子树

可以先找左子树最大或者右子树最小的值

这里我们选用右边子树 最小 值

1).先找到右子树最小值

2)递归调用我们定义的删除节点的函数删除右子树中的该最小值节点

3)然后将最小值的左右子树替换成我们原本要删除节点的左右子树

5.不同的二叉搜索树

输入一个正整数n,请你计算,存储{1,2,3...,n}这些值共有有多少种不同的 BST 结构。

因为每个值都可以作为根节点,所有可以遍历n,把每个值都作为一次节点,然后在分别递归计算左右节点可构成不同二叉搜索树数量,再将左二叉树可构成不同二叉搜索树数量 * 右二叉树可构成不同二叉搜索树数量

(可以写个二维数组缓存计算结果优化算法)

 进阶----不是计算数量而是返回建出所有合法的 BST

本质逻辑没变, 不过从返回的 数量变为返回保存合法BST的数组,然后先遍历左边合法BST数组再嵌套遍历右边合法BST数组,结合根节点组合出来的合法BST进行保存。

6.二叉搜索子树的最大键值和

此题最简单的解法应该是后序遍历,因为当前节点要做的事情需要通过左右子树的计算结果推导出来

首先我们需要知道具体信息

1、左右子树是否是 BST。

2、左子树的最大值

3、右子树的最小值。

4、左右子树的节点值之和。

既然要得到这个四个信息那可以要辅助函数直接返回这四个信息

res[0]记录以root为根的二叉树是否是 BST,若为 1 则说明是 BST,若为 0 则说明不是 BST;

res[1]记录以root为根的二叉树所有节点中的最小值;

res[2]记录以root为根的二叉树所有节点中的最大值;

res[3]记录以root为根的二叉树所有节点值之和。

7.二叉树序列化

1)前序遍历

序列化:

对于一个二叉树可以通过前序遍历将二叉树遍历后序列后组成以“,”隔开的字符串,对于null采用#号替代就好,

反序列化

首先将字符串拆解成数组,因为是前序遍历所以数组的第一个为根元素,然后shift数组的第一个元素,将shift后的数组作为参数递归函数,碰到#就返回null节点,这样递归完成后 ,最后即可形成二叉树。

8.二叉树的层级遍历

一个队列push一个父亲元素,当该数组不为空的时候while循环,在循环里面记录数组长度,利用该长度进行for循环pop出当前数组里面的全部元素,每次循环pop一个节点将该节点的左右子节点push进入数组。可以建立一个新数组用于存放本次for循环pop的节点,然后将该新数组push到while循环外的一个结果数组,最后出while循环后return该数组,就可以得到类似与

[
  [3],
  [9,20],
  [15,7]
]

的存放层级遍历结果的数组。

9.二叉树的最近公共祖先

1)首先明白函数的定义

1. 如果两个节点都不在root树中,那么直接返回null

2.如果两个节点都在root树中,返回最近的节点

3.如果只有一个节点在root树中,返回root树

2)确定基础案例

1.遍历到底部了

root = null,直接返回null

2.遍历过程中找到节点了

root == p或者q节点,那么返回root 

3)得到返回的函数值后应该怎么做

leftNode 

rightNode

leftNode为空rightNode不为空

返回rightNode

leftNode不为空rightNode为空

返回leftNode

leftNode不为空,rightNode不为空

返回root节点

leftNode为空,rightNode为空

返回null

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值