1.填充二叉树节点的右侧指针
二叉树的问题难点在于,如何把题目的要求细化成每个节点需要做的事情,但是如果只依赖一个节点的话,肯定是没办法连接「跨父节点」的两个相邻节点的,那么,我们的做法就是增加函数参数,一个节点做不到,我们就给他安排两个节点,「将每一层二叉树节点连接起来」可以细化成「将每两个相邻节点都连接起来]。
// 主函数
Node connect(Node root) {
if (root == null) return null;
connectTwoNode(root.left, root.right);
return root;
}
// 定义:输入两个节点,将它俩连接起来
void connectTwoNode(Node node1, Node node2) {
if (node1 == null || node2 == null) {
return;
}
/**** 前序遍历位置 ****/
// 将传入的两个节点连接
node1.next = node2;
// 连接相同父节点的两个子节点
connectTwoNode(node1.left, node1.right);
connectTwoNode(node2.left, node2.right);
// 连接跨越父节点的两个子节点
connectTwoNode(node1.right, node2.left);
}
2.将二叉树展开为链表
递归先将左右子树拉平, 然后通过遍历找到右子树的尾指针,再将左子树的链表接到右子树下面。
3、判断BST的合法性
此处有坑,如果直接使用单参数的递归,无法保证中间节点大于左BST的全部值,,对于中间节点的右边BST也同理,
boolean isValidBST(TreeNode root) {
if (root == null) return true;
if (root.left != null && root.val <= root.left.val)
return false;
if (root.right != null && root.val >= root.right.val)
return false;
return isValidBST(root.left)
&& isValidBST(root.right);
}
所以要给递归函数传递额外参数,将这种约束传递给子树的所有节点,这也是二叉树算法的一个小技巧。
boolean isValidBST(TreeNode root) {
return isValidBST(root, null, null);
}
/* 限定以 root 为根的子树节点必须满足 max.val > root.val > min.val */
boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
// base case
if (root == null) return true;
// 若 root.val 不符合 max 和 min 的限制,说明不是合法 BST
if (min != null && root.val <= min.val) return false;
if (max != null && root.val >= max.val) return false;
// 限定左子树的最大值是 root.val,右子树的最小值是 root.val
return isValidBST(root.left, min, root)
&& isValidBST(root.right, root, max);
}
4.在BST中搜索、插入、删除一个数框架
先说针对 BST 的遍历框架:
void BST(TreeNode root, int target) {
if (root.val == target)
// 找到目标,做点什么
if (root.val < target)
BST(root.right, target);
if (root.val > target)
BST(root.left, target);
}
在BST中插入一个数:
TreeNode insertIntoBST(TreeNode root, int val) {
// 找到空位置插入新节点
if (root == null) return new TreeNode(val);
// if (root.val == val)
// BST 中一般不会插入已存在元素
if (root.val < val)
root.right = insertIntoBST(root.right, val);
if (root.val > val)
root.left = insertIntoBST(root.left, val);
return root;
}
在BST中删除一个数:
总体逻辑是先找到这个数然后分三种情况进行判断
1.这个数既没有有左子树也没有右边子树
直接删除该节点
2.这个数只有左子树
那么将该数的左子树返回给父亲节点进行连接
3 .这个数 只有右子树
那么将该数的右子树返回给父亲节点进行连接
4.这个数既有左子树又有右子树
可以先找左子树最大或者右子树最小的值
这里我们选用右边子树 最小 值
1).先找到右子树最小值
2)递归调用我们定义的删除节点的函数删除右子树中的该最小值节点
3)然后将最小值的左右子树替换成我们原本要删除节点的左右子树
5.不同的二叉搜索树
输入一个正整数n
,请你计算,存储{1,2,3...,n}
这些值共有有多少种不同的 BST 结构。
因为每个值都可以作为根节点,所有可以遍历n,把每个值都作为一次节点,然后在分别递归计算左右节点可构成不同二叉搜索树数量,再将左二叉树可构成不同二叉搜索树数量 * 右二叉树可构成不同二叉搜索树数量
(可以写个二维数组缓存计算结果优化算法)
进阶----不是计算数量而是返回建出所有合法的 BST
本质逻辑没变, 不过从返回的 数量变为返回保存合法BST的数组,然后先遍历左边合法BST数组再嵌套遍历右边合法BST数组,结合根节点组合出来的合法BST进行保存。
6.二叉搜索子树的最大键值和
此题最简单的解法应该是后序遍历,因为当前节点要做的事情需要通过左右子树的计算结果推导出来
首先我们需要知道具体信息
1、左右子树是否是 BST。
2、左子树的最大值
3、右子树的最小值。
4、左右子树的节点值之和。
既然要得到这个四个信息那可以要辅助函数直接返回这四个信息
res[0]
记录以root
为根的二叉树是否是 BST,若为 1 则说明是 BST,若为 0 则说明不是 BST;
res[1]
记录以root
为根的二叉树所有节点中的最小值;
res[2]
记录以root
为根的二叉树所有节点中的最大值;
res[3]
记录以root
为根的二叉树所有节点值之和。
7.二叉树序列化
1)前序遍历
序列化:
对于一个二叉树可以通过前序遍历将二叉树遍历后序列后组成以“,”隔开的字符串,对于null采用#号替代就好,
反序列化
首先将字符串拆解成数组,因为是前序遍历所以数组的第一个为根元素,然后shift数组的第一个元素,将shift后的数组作为参数递归函数,碰到#就返回null节点,这样递归完成后 ,最后即可形成二叉树。
8.二叉树的层级遍历
一个队列push一个父亲元素,当该数组不为空的时候while循环,在循环里面记录数组长度,利用该长度进行for循环pop出当前数组里面的全部元素,每次循环pop一个节点将该节点的左右子节点push进入数组。可以建立一个新数组用于存放本次for循环pop的节点,然后将该新数组push到while循环外的一个结果数组,最后出while循环后return该数组,就可以得到类似与
[ [3], [9,20], [15,7] ]
的存放层级遍历结果的数组。
9.二叉树的最近公共祖先
1)首先明白函数的定义
1. 如果两个节点都不在root树中,那么直接返回null
2.如果两个节点都在root树中,返回最近的节点
3.如果只有一个节点在root树中,返回root树
2)确定基础案例
1.遍历到底部了
root = null,直接返回null
2.遍历过程中找到节点了
root == p或者q节点,那么返回root
3)得到返回的函数值后应该怎么做
leftNode
rightNode
leftNode为空rightNode不为空
返回rightNode
leftNode不为空rightNode为空
返回leftNode
leftNode不为空,rightNode不为空
返回root节点
leftNode为空,rightNode为空
返回null