材料力学数值方法:有限差分法(FDM):三维问题的有限差分法
绪论
有限差分法的基本概念
有限差分法(Finite Difference Method, FDM)是一种数值分析方法,用于求解微分方程。在材料力学中,FDM通过将连续的物理域离散化为有限数量的节点和单元,将微分方程转换为代数方程组,从而实现对复杂结构的应力、应变和位移的计算。在三维问题中,FDM需要处理三个方向上的变化,增加了计算的复杂性和精度。
原理
FDM的基本原理是用差商代替导数。例如,对于一维空间中的二阶导数,可以使用中心差分公式:
∂2u∂x2≈u(x+h)−2u(x)+u(x−h)h2 \frac{\partial^2 u}{\partial x^2} \approx \frac{u(x+h) - 2u(x) + u(x-h)}{h^2}
订阅专栏 解锁全文
908

被折叠的 条评论
为什么被折叠?



