- 博客(462)
- 资源 (7)
- 收藏
- 关注
原创 rainfall <400 和rainfall[rainfall <400]的区别
表达式核心类型行列结构存储值类型核心作用结果示例(City2 列)布尔型 DataFrame和原数据一致True/False生成条件判断掩码数值型 DataFrame(含 NaN)和原数据一致原数值 / NaN基于掩码筛选提取原数据rainfall < 400 是条件判断步骤,生成和原数据同结构的布尔掩码,仅标记满足条件的位置,无原数值;
2026-02-01 20:54:37
215
原创 虚假证明 1¢= $0.01=($0.1)2
这个虚假推导的错误并非出在货币换算本身,而是基础的量纲运算错误把纯数值的平方关系,直接套用到带货币单位的量上,且全程刻意省略平方后的单位,将「带单位的货币量」和「无单位的纯数字」混为一谈,最后无依据地把纯数字100等同于$$1$,完成了逻辑上的偷换。纯数字可以随便平方,但带单位的量,平方时单位必须一起平方,这是所有运算的基本规则,一旦违背,就会得出类似$1¢=$1$的荒谬结论。
2026-01-31 02:45:00
759
原创 假断言1/8>1/4
虚假证明的唯一错误:不等式两边同乘负数log1012log101/2,未反转不等号方向,这是不等式运算的基础禁忌;关键提醒:进行不等式乘除运算时,必须先判断乘除的数是正数还是负数:乘除正数,不等号方向不变;乘除负数,不等号方向必须反转;后续的对数幂运算、对数单调性应用均为正确的数学法则,仅因前期核心错误导致最终结论失真。
2026-01-31 00:45:00
478
原创 GUI 问题 self.
作为类的知识里 self.__v1 或self.v1 任意值 是定义实例属性的唯一标准方式,这一点在 Tkinter 中完全适用,本质上也是这个规则的体现。要理解这行代码,需拆成 “类的实例属性定义”和“Tkinter 变量类的作用” 两部分,结合起来就是:自带 “值变更监听”,当变量的值改变时,绑定的 GUI 控件会自动更新状态;反之,当用户操作控件(如勾选复选框、选择单选框)时,变量的值也会自动同步更新—— 这是 Tkinter 实现 “控件联动” 的核心机制。为什么不直接定义普通实例属性self.v1
2026-01-30 02:45:00
1378
原创 GUI by Python 6 一段 gui 代码分析
这份代码是Tkinter 基础控件的经典综合示例,整合了Frame、Checkbutton、Radiobutton、Label、Entry、Button、Message、Text等核心控件,采用面向对象封装方式,非常适合入门学习 Tkinter 的控件使用和布局逻辑。下面从优点、缺点两方面全面分析,并补充针对性优化建议和优化后完整代码,兼顾学习性和实用性。一、代码核心优点(入门友好,基础扎实)
2026-01-29 21:48:41
667
原创 GUI by Python1
GUI(Graphical User Interface,图形用户界面)是一种通过视觉元素(如图标、按钮、窗口等)与用户交互的界面形式。与命令行界面(CLI)相比,GUI 更直观易用,适合普通用户操作。GUI 的核心组件窗口(Window):应用程序的主要交互区域。控件(Widgets):如按钮、文本框、下拉菜单等交互元素。事件驱动(Event-Driven):用户操作(如点击、输入)触发事件,程序响应事件执行逻辑。Tkinter模块包含创建各种GUI的类增加了一个button。
2026-01-26 14:48:48
780
原创 一个虚假证明的错误(二)
核心逻辑:错误的前提(1=-1)会破坏实数的基本运算规则,因此可以推导出任何荒谬的结论(比如2=1),这也反过来证明“1=-1”本身是错误的。• 如果去掉“正实数”的限制(比如r或s为负),这个结论不成立,这也是开头“1=-1”虚假证明的根本错误。把式1和式2结合:2 = 0 = 1(因为0可以通过1-1得到,或更简单的方式)给等式两边同时加1:1 + 1 = -1 + 1 → 2 = 0(记为式1)已知 1 = -1,两边同时乘-1:-1 = 1(记为式2)二、证明:如果1=-1,那么2=1。
2026-01-26 14:32:33
1363
原创 勾股定理(毕达哥拉斯定理)
求斜边:ca2b2求斜边:c=a^{2}+b^{2}求斜边:ca2b2求直角边aac2−b2求直角边 a:a=c^{2}−b^{2}求直角边aac2−b2求直角边bbc2−a2求直角边 b:b=c^{2}−a^{2}求直角边bbc2−a2通俗举例最经典的勾股数组合:3(a)、4(b)、5(c)32429162552,完全符合定理;
2026-01-25 11:52:41
771
原创 《计算机科学中的数学信息与智能时代的必修课》第一章学习
假断言-----是书中有明确“通过抽样法很难判断它的真假”断言、猜想、假断言是属于一种命题,和纯粹的命题不一样。根据书里写的感觉,我认为以下这四个词应该属于一个类。定义 命题是一个或真或假的语句(表述)断言----从抽象的数据中得到答案。猜想----从或真或假中得到启发。
2026-01-23 21:30:24
146
原创 同学们预测下星期考试,推理哪不对,《计算机科学中的数学》随堂练习1.1
同学们的推理陷入了“自我指涉的循环”他们用 “未来的结果(前四天没考试)” 来否定 “现在的可能性(周五考试)”,然后又用这个被否定的结论,去否定更早的可能性。而 Albert 的高明之处在于:学生们以为 “每天都不可能考”,所以当考试真的在周二来临时,反而成了最大的惊喜—— 因为学生的预判是 “根本没有考试”,自然不会提前确定 “周二要考”。简单来说:“周五不能考” 的前提是 “前四天没考”,但如果周二就考了,前四天的时间都没走完,这个前提就不存在了。
2026-01-21 03:30:00
1423
原创 《计算机科学中的数学》命题这章提到费马大定律的目的
为什么引用费马大定理,来展开命题相关概念《计算机科学中的数学信息与智能时代的必修课》第1章 什么是证明1.1 命题1.15 费马大定律-(又称费马最后定理)xnynznxnynzn没有正整数解.
2026-01-21 02:45:00
1256
原创 has_solution = False 是什么 费马大定律代码化和定理《计算机科学中的数学》外扩学习3
接着之前探讨如何python代码化费马大定律,
2026-01-20 06:30:00
1049
原创 构建iff链 证明P为真iff Q为真
实数的平方总是非负的,因此等式左侧的每一项都是非负的因此.左侧的每一项都是0。如:考试得分标准差是零,当且仅当每一个人都正好得的是平均成绩。我们构建一个iff蕴涵链,从标准差是0这个语句开始。的标准差是零,当且仅当所有值都等于平均数.只有0的平方根是0,因此上式等价于。
2026-01-19 00:45:00
388
原创 《Python语言程序设计2018》第9章 显示图像。向标签、按钮、复选按钮
【代码】《Python语言程序设计2018》第9章 显示图像。向标签、按钮、复选按钮。
2026-01-18 03:00:00
208
原创 当且仅当iff概念和两个构建方法
语句“P IFF Q”等价于两个语句“P IMPLIES Q”以及“Q IMPLIES P”.因此,要证明"iff"
2026-01-15 03:00:00
378
原创 证明逆反命题代码化(2理论再深入,不含python代码)
有理数的严格定义:一个实数称为有理数,当且仅当它可以表示为两个整数的比值(分数形式),即存在整数p和qp 和 qp和q(满足q≠0q\neq0q0,且p与qp 与 qp与q互质可选,并非必须),使得该实数可以写成pqqp 的形式。反之,无法表示为这种形式的实数称为无理数。m4n4n4m4。
2026-01-14 06:00:00
576
原创 证明逆反命题代码化(1理论部分)
蕴涵(“P IMPLIES Q”)逻辑等价于它的逆反命题(contrapostive)**证明一个命题就相当于证明了另一个,有时候证明逆反命题比证明原命题更简单.
2026-01-14 03:30:00
417
原创 P IMPLIES Q 证明蕴涵
ax2bxc0且a0则x−b±b2−4ac/2a* 如果n是大于2的偶整数,则n是两个质数的和.如果0≤x≤2则−x34x10。
2026-01-13 06:00:00
1085
《python语言程序设计》梁勇版 第5章循环课后题从第1到第55道
2024-07-15
02-00 exercises.py
2020-04-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅