python中 Matplotlib 基本画图(1)

安装Matplotlib

pip install Matplotlib

了解Matplotlib

首先要导入画图的库
在这里插入图片描述
为了使接下来写代码更加轻松:使用pla、np,简写代替matplotlib、numpy。

1.基本绘图知识:

在这里插入图片描述
在这里插入图片描述

开始画图

2.绘制单个图形

import matplotlib.pyplot as plt
# 设置X的坐标
x=[1,2,3,4]

# 设置y的坐标
y=[1,3,5,7]

# 绘制图像
plt.plot(x,y)

# 显示出图形
plt.show()

在这里插入图片描述
3**.线条属性设置**

import matplotlib.pyplot as plt
'''
color=线条颜色:red,blue......
marker=点的形状
linestyle=线条形状
'''

# 设置X的坐标
x=[1,2,3,4]

# 设置y的坐标
y=[1,3,5,7]

# 绘制图像
plt.plot(x,y,color='blue',marker='>',linestyle='--')

# 显示出图形
plt.show()

在这里插入图片描述
4.添加图示

import matplotlib.pyplot as plt

# 设置X的坐标
x=[1,2,3,4]
# 设置y的坐标
y=[1,3,5,7]
# 绘制图像
plt.plot(x,y,color='blue',marker='>',linestyle='--',linewidth='3')  # linewidth=线条宽度
# 添加文字
plt.xlabel('X1')
plt.ylabel('y1')
# 添加标题
plt.title('first')
# 显示出图形
plt.show()

在这里插入图片描述
5.坐标轴的限定

import matplotlib.pyplot as plt

# 设置X的坐标
x=[1,2,3,4,7,8]
# 设置y的坐标
y=[1,3,5,7,9,11]
# 绘制图像
plt.plot(x,y,color='blue',marker='>',linestyle='--',linewidth='3')
# 添加文字
plt.xlabel('X1')
plt.ylabel('y1')
# 添加标题
plt.title('first')
'''
axis:坐标轴限定
'''
plt.xlim(1,10)
plt.ylim(1,12)
# plt.axis([1,10,1,12])>>>plt.axis([xmin,xmax,ymin,ymax]) 也可以表达

# 显示出图形
plt.show()

在这里插入图片描述

### 回答1: Matplotlib是一个用于在Python绘制图形的库,支持多种类型的图形,如直方图、折线图、散点图、饼图、热图等。使用Matplotlib绘图需要先导入该库,然后设置图形类型和数据,最后使用plot或其他绘图函数绘制图形。代码示例: ``` import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.plot(x, y) plt.show() ``` 这将绘制一条折线图。 ### 回答2: MatplotlibPython经典的绘图库,它可以用来绘制各种类型的图表,包括线图、散点图、柱状图、等高线图等等。Matplotlib是一个非常灵活的库,用户可以调整图表的各种属性,定制出自己想要的图像效果。 Matplotlib库将绘图过程分为三个部分:数据准备、图像绘制和展示。其,数据准备是将需要绘制的数据准备好,图像绘制是将准备好的数据转换成图像,而展示则是将图像显示出来。下面是详细的使用步骤: 1.导入Matplotlib库 在Python使用Matplotlib库需要先导入该库,导入时一般使用如下指令: import matplotlib.pyplot as plt 其,plt是库的缩写,在绘图时可以直接使用该缩写,避免频繁地输入较长的库名称。 2.准备数据 在Matplotlib,数据可以通过Python的列表或NumPy数组来表示。为了绘制图形,首先需要准备好要绘制的数据。例如,要绘制一条曲线,可以先生成横坐标和纵坐标对应的列表: import numpy as np x = np.arange(0, 10, 0.1) y = np.sin(x) 其,np.arange(0, 10, 0.1)生成了一个从0到10,步长为0.1的数组,而np.sin()函数将该数组的每个数值都计算其正弦值。 3.绘制图像 在准备好数据后,就可以进行图像绘制了。Matplotlib有许多函数可以用来绘制不同类型的图表,例如: - plt.plot(x, y):绘制一条曲线; - plt.scatter(x, y):绘制散点图; - plt.bar(x, y):绘制柱状图。 绘图函数通常包括一些可选参数,用来调整图像的样式和布局。例如,可以设置曲线的颜色、线型和线宽等: plt.plot(x, y, color='blue', linewidth=2, linestyle='--') 4.展示图像 图像绘制完成后,最后一步就是展示图像。可以使用plt.show()函数将绘制出来的图像显示出来: plt.show() 但是,在某些情况下,需要将图像保存为文件,可以使用plt.savefig()函数将图像保存为PNG、PDF等格式的文件: plt.savefig('sin_curve.png') 总的来说,Matplotlib是一个灵活、易用的绘图库,适合各种数据可视化的应用场景。它支持的图表类型很多,还提供了许多可选参数用于对图像做进一步的调整和修改。 ### 回答3: matplotlib是一个绘图库,可以用Python语言创建各种静态,动态、交互式的图形界面。它是Python Data Science的核心库之一,提供了各种方法、类和函数,能够轻松地绘制各种类型的图形,例如:折线图、散点图、柱状图、饼图、热力图、3D图、子图等等。 matplotlib库是Python绘图的基础库,其主要优点有: 1. 可以在Python语言轻松创建各种图表 2. 支持互动式图形 3. 可以生成高质量的图表,支持各种格式的输出 4. matplotlib可以和NumPy这样的数值计算库紧密结合使用 matplotlib是一个开源项目,在PyPI(Python Package Index)上已经被安装了上百万次,用户群体庞大,因此使用matplotlib开发的应用程序较多。特别是在数据科学和机器学习领域,matplotlib是最常用的绘图库之一。 使用matplotlib可以分为三个步骤:数据处理、图形配置、图形展示。 1. 数据处理:将数据从文件或数据库读取,并对数据进行初步的处理和清洗,以便更好的生成图表。 2. 图形配置:配置图表的样式、标签、标题、坐标轴、调色板等信息。 3. 图形展示:通过show()函数或保存成图片的方式将图表展示给用户。 最后,需要注意的是,matplotlib的图形展示通常需要手动结束绘图进程,否则图形窗口会一直显示。因此,使用时需要谨慎处理。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值