【题目】求方程 x^5+10x^3+20x-4=0 的根

一、题目

x 5 + 10 x 3 + 20 x − 4 = 0 x^5 + 10x^3+20x-4=0 x5+10x3+20x4=0

二、解答

此答题过程来自于韦东奕的解题思路,其中神之一手换元 x = a − 2 a \boxed{ x=a-\frac{2}{a}} x=aa2 令人惊叹不已!其如此敏锐解体思路除了数学方面的天赋专注以外,题海战术、将知识融会贯通都缺一不可。

1.换元

令: x = a − 2 a x=a-\frac{2}{a} x=aa2,带入原式:
( a − 2 a ) 5 + 10 ( a − 2 a ) 3 + 20 ( a − 2 a ) − 4 = 0 (a-\frac{2}{a})^5+10(a-\frac{2}{a})^3+20(a-\frac{2}{a})-4=0 (aa2)5+10(aa2)3+20(aa2)4=0

2.多项式展开

⟹ a 5 − 10 a 3 + 40 a − 80 1 a + 80 1 a 3 − 32 a 5 + 10 a 3 − 80 1 a 3 − 60 a + 120 1 a + 20 a − 40 1 a − 4 = 0 \Longrightarrow a^5-10a^3+40a-80\frac{1}{a}+80\frac{1}{a^3}-\frac{32}{a^5}+10a^3-80\frac{1}{a^3}-60a+120\frac{1}{a}+20a-40\frac{1}{a}-4=0 a510a3+40a80a1+80a31a532+10a380a3160a+120a1+20a40a14=0
⟹ a 5 − 10 a 3 + 40 a − 80 1 a + 80 1 a 3 − 32 a 5 + 10 a 3 − 80 1 a 3 − 60 a + 120 1 a + 20 a − 40 1 a − 4 = 0 \Longrightarrow a^5-\boxed{\xcancel{10a^3}}+40a-80\frac{1}{a}+80\frac{1}{a^3}-\frac{32}{a^5}+\boxed{\xcancel{10a^3}}-80\frac{1}{a^3}-60a+120\frac{1}{a}+20a-40\frac{1}{a}-4=0 a510a3 +40a80a1+80a31a532+10a3 80a3160a+120a1+20a40a14=0
⟹ a 5 + 40 a − 80 1 a + 80 1 a 3 − 32 a 5 + − 80 1 a 3 − 60 a + 120 1 a + 20 a − 40 1 a − 4 = 0 \Longrightarrow a^5+\boxed{\xcancel{40a}}-80\frac{1}{a}+80\frac{1}{a^3}-\frac{32}{a^5}+-80\frac{1}{a^3}-\boxed{\xcancel{60a}}+120\frac{1}{a}+\boxed{\xcancel{20a}}-40\frac{1}{a}-4=0 a5+40a 80a1+80a31a532+80a3160a +120a1+20a 40a14=0
⟹ a 5 − 80 1 a + 80 1 a 3 − 32 a 5 − 80 1 a 3 + 120 1 a − 40 1 a − 4 = 0 \Longrightarrow a^5-\boxed{\xcancel{80\frac{1}{a}}}+80\frac{1}{a^3}-\frac{32}{a^5}-80\frac{1}{a^3}+\boxed{\xcancel{120\frac{1}{a}}}-\boxed{\xcancel{40\frac{1}{a}}}-4=0 a580a1 +80a31a53280a31+120a1 40a1 4=0
⟹ a 5 + 80 1 a 3 − 32 a 5 − 80 1 a 3 − 4 = 0 \Longrightarrow a^5+\boxed{\xcancel{80\frac{1}{a^3}}}-\frac{32}{a^5}-\boxed{\xcancel{80\frac{1}{a^3}}}-4=0 a5+80a31 a53280a31 4=0
除了五次项以外其他项都能互相消除掉,最后只剩下以下式子。
⟹ a 5 − 32 a 5 − 4 = 0 \Longrightarrow a^5-\frac{32}{a^5}-4=0 a5a5324=0
左右两边同时乘以 a 5 a^5 a5
( a 5 ) 2 − 4 × a 5 − 32 = 0 (a^5)^2-4\times a^5-32=0 (a5)24×a532=0

3. 因式分解 求a

( a 5 − 8 ) ( a 5 + 4 ) = 0 (a^5-8)(a^5+4)=0 (a58)(a5+4)=0
解出
{ a 5 = 8 a 5 = − 4 或者 a 5 = 4 e π i \begin{cases} a^5=8 \\ a^5=-4 或者 a^5=4e^{\pi i} \end{cases} {a5=8a5=4或者a5=4eπi

⇔ { a 1 = 8 1 5 a 2 = ( − 4 ) 1 5 或者根据欧拉公式写成 a 2 = 4 5 e π 5 i \lrArr \begin{cases} a_1=8^{\frac{1}{5}} \\ a_2=(-4)^{\frac{1}{5}} 或者根据欧拉公式写成 a_2=\sqrt[5]{4} e^{\frac{\pi}{5} i} \end{cases} {a1=851a2=(4)51或者根据欧拉公式写成a2=54 e5πi
使用欧拉公式替代以后解出另外3个复数根
⇔ { a 1 = 8 1 5 a 2 = ( − 4 ) 1 5 = 4 5 e π 5 i a 3 = 4 5 e ( π 5 + 2 π ) i = 4 5 e 11 π 5 i a 4 = 4 5 e ( 11 π 5 + 2 π ) i = 4 5 e 21 π 5 i a 5 = 4 5 e ( 21 π 5 + 2 π ) i = 4 5 e 31 π 5 i \lrArr \begin{cases} a_1=8^{\frac{1}{5}} \\ a_2=(-4)^{\frac{1}{5}} =\sqrt[5]{4} e^{\frac{\pi}{5} i} \\ a_3=\sqrt[5]{4} e^{(\frac{\pi}{5}+2\pi) i} =\sqrt[5]{4} e^{\frac{11\pi}{5} i} \\ a_4=\sqrt[5]{4} e^{(\frac{11\pi}{5}+2\pi) i}=\sqrt[5]{4} e^{\frac{21\pi}{5} i} \\ a_5=\sqrt[5]{4} e^{(\frac{21\pi}{5}+2\pi) i}=\sqrt[5]{4} e^{\frac{31\pi}{5} i} \end{cases} a1=851a2=(4)51=54 e5πia3=54 e(5π+2π)i=54 e511πia4=54 e(511π+2π)i=54 e521πia5=54 e(521π+2π)i=54 e531πi

4. 用a求x根

⇔ { a 1 = 8 5 a 2 = − 4 5 = 4 5 e π 5 i = 4 5 c o s π 5 + 4 5 i s i n π 5 a 3 = 4 5 e ( π 5 + 2 π ) i = 4 5 e 11 π 5 i a 4 = 4 5 e ( 11 π 5 + 2 π ) i = 4 5 e 21 π 5 i a 5 = 4 5 e ( 21 π 5 + 2 π ) i = 4 5 e 31 π 5 i \lrArr \begin{cases} a_1=\sqrt[5]8 \\ a_2=\sqrt[5]{-4} =\sqrt[5]{4} e^{\frac{\pi}{5} i} =\sqrt[5]{4} cos\frac{\pi}{5} +\sqrt[5]{4} i sin\frac{\pi}{5} \\ a_3=\sqrt[5]{4} e^{(\frac{\pi}{5}+2\pi) i} =\sqrt[5]{4} e^{\frac{11\pi}{5} i} \\ a_4=\sqrt[5]{4} e^{(\frac{11\pi}{5}+2\pi) i}=\sqrt[5]{4} e^{\frac{21\pi}{5} i} \\ a_5=\sqrt[5]{4} e^{(\frac{21\pi}{5}+2\pi) i}=\sqrt[5]{4} e^{\frac{31\pi}{5} i} \end{cases} a1=58 a2=54 =54 e5πi=54 cos5π+54 isin5πa3=54 e(5π+2π)i=54 e511πia4=54 e(511π+2π)i=54 e521πia5=54 e(521π+2π)i=54 e531πi

⟹ { x 1 = 8 5 − 2 8 5 x 2 = − 4 5 − 2 − 4 5 \Longrightarrow \begin{cases} x_1=\sqrt[5]8 -\frac{2}{\sqrt[5]8} \\ x_2=\sqrt[5]{-4} -\frac{2}{\sqrt[5]{-4}} \end{cases} {x1=58 58 2x2=54 54 2
其中 x 2 x_2 x2使用欧拉公式来替换
x 2 = a − 2 a = a − 2 a − 1 = 4 5 c o s π 5 + 4 5 i s i n π 5 − 2 4 5 c o s − π 5 − 2 4 5 i s i n − π 5 = 4 5 c o s π 5 + 4 5 i s i n π 5 − 2 4 5 c o s π 5 + 2 4 5 i s i n π 5 = − 4 5 c o s π 5 + 3 4 5 i s i n π 5 x_2=a-\frac{2}{a} = a-2a^{-1}=\sqrt[5]{4} cos\frac{\pi}{5} +\sqrt[5]{4} i sin\frac{\pi}{5} - 2 \sqrt[5]{4} cos\frac{-\pi}{5} -2\sqrt[5]{4} i sin\frac{-\pi}{5} \\ = \sqrt[5]{4} cos\frac{\pi}{5} +\sqrt[5]{4} i sin\frac{\pi}{5} - 2 \sqrt[5]{4} cos\frac{\pi}{5} +2\sqrt[5]{4} i sin\frac{\pi}{5} =- \sqrt[5]{4} cos\frac{\pi}{5} +3\sqrt[5]{4} i sin\frac{\pi}{5} x2=aa2=a2a1=54 cos5π+54 isin5π254 cos5π254 isin5π=54 cos5π+54 isin5π254 cos5π+254 isin5π=54 cos5π+354 isin5π
解出另外3个复数根

⇔ { x 1 = 8 5 − 2 8 5 x 2 = − 4 5 c o s π 5 + 3 4 5 i s i n π 5 x 3 = − 4 5 c o s 11 π 5 + 3 4 5 i s i n 11 π 5 x 4 = − 4 5 c o s 21 π 5 + 3 4 5 i s i n 21 π 5 x 5 = − 4 5 c o s 31 π 5 + 3 4 5 i s i n 31 π 5 \lrArr \begin{cases} x_1=\sqrt[5]8 -\frac{2}{\sqrt[5]8} \\ x_2=- \sqrt[5]{4} cos\frac{\pi}{5} +3\sqrt[5]{4} i sin\frac{\pi}{5} \\ x_3=- \sqrt[5]{4} cos\frac{11\pi}{5} +3\sqrt[5]{4} i sin\frac{11\pi}{5}\\ x_4=- \sqrt[5]{4} cos\frac{21\pi}{5} +3\sqrt[5]{4} i sin\frac{21\pi}{5}\\ x_5=- \sqrt[5]{4} cos\frac{31\pi}{5} +3\sqrt[5]{4} i sin\frac{31\pi}{5} \end{cases} x1=58 58 2x2=54 cos5π+354 isin5πx3=54 cos511π+354 isin511πx4=54 cos521π+354 isin521πx5=54 cos531π+354 isin531π
如果你不知道复数根是什么,你可以百度


三、神之 x = a − 2 / a x=a-2/a x=a2/a 的由来

1. 换元

x = a + b x=a+b x=a+b
( a + b ) 5 + 10 ( a + b ) 3 + 20 ( a + b ) − 4 = 0 (a+b)^5 + 10(a+b)^3+20(a+b)-4=0 (a+b)5+10(a+b)3+20(a+b)4=0

根据二项式定理
( a + b ) n = ( n 0 ) a n b 0 + ( n 1 ) a n − 1 b 1 + ( n 2 ) a n − 2 b 2 + ⋯ + ( n n ) a 0 b n (a+b)^n=\begin{pmatrix} n \\ 0 \end{pmatrix}a^nb^0+\begin{pmatrix} n \\ 1 \end{pmatrix} a^{n-1}b^1+\begin{pmatrix} n \\ 2 \end{pmatrix} a^{n-2}b^2+\dots+\begin{pmatrix} n \\ n \end{pmatrix} a^0b^n (a+b)n=(n0)anb0+(n1)an1b1+(n2)an2b2++(nn)a0bn
其中 ( n k ) \begin{pmatrix} n \\ k \end{pmatrix} (nk)是组合数,表示从 n n n个元素中选择 k k k个元素的不同方式数。
组合数的计算公式为 ( n k ) = n ! k ! ( n − k ) ! \begin{pmatrix} n \\ k \end{pmatrix}=\frac{n!}{k!(n-k)!} (nk)=k!(nk)!n!,其中 n ! n! n表示阶乘。
n ! n! n!表示 n n n的阶乘,即 n × ( n − 1 ) × ⋯ × 2 × 1 n\times(n-1)\times\dots\times2\times1 n×(n1)××2×1

分别展开每一项
{ ( a + b ) 5 = a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + b 5 10 ( a + b ) 3 = 10 a 3 + 30 a 2 b + 30 a b 2 + 10 b 3 20 ( a + b ) = 20 a + 20 b \begin{cases} (a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5 \\ 10(a+b)^3=10a^3+30a^2b+30ab^2+10b^3 \\ 20(a+b)=20a+20b \end{cases} (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b510(a+b)3=10a3+30a2b+30ab2+10b320(a+b)=20a+20b
我们注意到 ( a + b ) 5 (a+b)^5 (a+b)5展开之后出现了四次项,
( a + b ) 5 = a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + b 5 (a+b)^{5}= a^{5}+\boxed{5a^{4}b}+10a^{3}b^2+10a^{2}b^{3}+\boxed{5ab^{4}}+b^{5} (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
而原方程没有四次项
x 5 + 10 x 3 + 20 x − 4 = 0 \boxed{x^5 + 10x^3+20x-4=0} x5+10x3+20x4=0
因此我们要想办法消除四次项,
( a + b ) 5 = a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + b 5 (a+b)^{5}= a^{5}+\boxed{\xcancel{5a^{4}b}}+10a^{3}b^2+10a^{2}b^{3}+\boxed{\xcancel{5ab^{4}}}+b^{5} (a+b)5=a5+5a4b +10a3b2+10a2b3+5ab4 +b5
自然而然就容易想到令: b = a 的倒数 b=a的倒数 b=a的倒数

2.求待定系数

我们不妨令 b = n a b=\frac{n}{a} b=an,其中 n n n是待定系数,
{ ( a + n a ) 5 = a 5 + 5 a 4 n a + 10 a 3 ( n a ) 2 + 10 a 2 ( n a ) 3 + 5 a ( n a ) 4 + ( n a ) 5 10 ( a + n a ) 3 = 10 a 3 + 30 a 2 n a + 30 a ( n a ) 2 + 10 ( n a ) 3 20 ( a + n a ) = 20 a + 20 n a \begin{cases} (a+\frac{n}{a})^5 = a^5+\boxed{5a^4\frac{n}{a}}+10a^3(\frac{n}{a})^2+10a^2(\frac{n}{a})^3+\boxed{5a(\frac{n}{a})^4}+(\frac{n}{a})^5 \\ 10(a+\frac{n}{a})^3=10a^3+30a^2\frac{n}{a}+30a(\frac{n}{a})^2+10(\frac{n}{a})^3 \\ 20(a+\frac{n}{a})=20a+20\frac{n}{a} \end{cases} (a+an)5=a5+5a4an+10a3(an)2+10a2(an)3+5a(an)4+(an)510(a+an)3=10a3+30a2an+30a(an)2+10(an)320(a+an)=20a+20an
那么原来的四此项就变成了三次项
{ ( a + n a ) 5 = a 5 + 5 n a 3 + 10 n 2 a + 10 n 3 a + 5 n 4 a 3 + n 5 a 5 10 ( a + n a ) 3 = 10 a 3 + 30 n a + 30 ( n 2 a ) + 10 n 3 a 3 20 ( a + n a ) = 20 a + 20 n a \begin{cases} (a+\frac{n}{a})^5 = a^5+\boxed{5na^3}+10n^2a+10\frac{n^3}{a}+\boxed{5\frac{n^4}{a^3}}+\frac{n^5}{a^5} \\ 10(a+\frac{n}{a})^3=10a^3+30na+30(\frac{n^2}{a})+10\frac{n^3}{a^3} \\ 20(a+\frac{n}{a})=20a+20\frac{n}{a} \end{cases} (a+an)5=a5+5na3+10n2a+10an3+5a3n4+a5n510(a+an)3=10a3+30na+30(an2)+10a3n320(a+an)=20a+20an
二次项就变成了一次项
{ ( a + n a ) 5 = a 5 + 5 n a 3 + 10 n 2 a + 10 n 3 a + 5 n 4 a 3 + n 5 a 5 10 ( a + n a ) 3 = 10 a 3 + 30 n a + 30 ( n 2 a ) + 10 n 3 a 3 20 ( a + n a ) = 20 a + 20 n a \begin{cases} (a+\frac{n}{a})^5 = a^5+5na^3+\boxed{10n^2a}+10\frac{n^3}{a}+5\frac{n^4}{a^3}+\frac{n^5}{a^5} \\ 10(a+\frac{n}{a})^3=10a^3+\boxed{30na}+30(\frac{n^2}{a})+10\frac{n^3}{a^3} \\ 20(a+\frac{n}{a})=20a+20\frac{n}{a} \end{cases} (a+an)5=a5+5na3+10n2a+10an3+5a3n4+a5n510(a+an)3=10a3+30na+30(an2)+10a3n320(a+an)=20a+20an
以此类推,为了求出待定系数 n n n,我们合并方程中的同类项。
a 5 + ( 5 n + 10 ) a 3 + ( 10 n 2 + 30 n + 20 ) a + ( 10 n 3 + 30 n 2 + 20 n ) 1 a + ( 5 n 4 + 10 n 3 ) 1 a 3 + n 5 a 5 − 4 = 0 a^5+(5n+10)a^3+(10n^2+30n+20)a+(10n^3+30n^2+20n)\frac{1}{a}+(5n^4+10n^3)\frac{1}{a^3}+\frac{n^5}{a^5}-4=0 a5+(5n+10)a3+(10n2+30n+20)a+(10n3+30n2+20n)a1+(5n4+10n3)a31+a5n54=0

3.因式分解

a 5 + 5 ( n + 2 ) a 3 + 10 ( n + 1 ) ( n + 2 ) a + 10 n ( n + 1 ) ( n + 2 ) 1 a + 5 n 3 ( n + 2 ) 1 a 3 + n 5 a 5 − 4 = 0 a^5+5(n+2)a^3+10(n+1)(n+2)a+10n(n+1)(n+2)\frac{1}{a}+5n^3(n+2)\frac{1}{a^3}+\frac{n^5}{a^5}-4=0 a5+5(n+2)a3+10(n+1)(n+2)a+10n(n+1)(n+2)a1+5n3(n+2)a31+a5n54=0
除了五次项和常数项之外,三次项和一次项都包含因子 n + 2 n+2 n+2
a 5 + 5 ( n + 2 ) a 3 + 10 ( n + 1 ) ( n + 2 ) a + 10 n ( n + 1 ) ( n + 2 ) 1 a + 5 n 3 ( n + 2 ) 1 a 3 + n 5 a 5 − 4 = 0 a^5+\boxed{5(n+2)a^3}+\boxed{10(n+1)(n+2)a}+\boxed{10n(n+1)(n+2)\frac{1}{a}}+\boxed{5n^3(n+2)\frac{1}{a^3}}+\frac{n^5}{a^5}-4=0 a5+5(n+2)a3+10(n+1)(n+2)a+10n(n+1)(n+2)a1+5n3(n+2)a31+a5n54=0
那么我们只要令 n + 2 = 0 n+2=0 n+2=0就能够把这些项都消除掉!从而解得待定系数: n = − 2 n=-2 n=2这就是神之假设 x = a − 2 a x=a-\frac{2}{a} x=aa2的由来。

总结来说,遇到此类可解奇数项方程的时候,我们都可以用上述换元法与待定系数法来化简原方程,进而解出方程的根。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值