一.
损失函数有时也叫代价函数或者误差函数。
个人理解就是将样本图片输入网络后会得到一个得分,
再将得分输入损失函数会得到一个损失,
损失越低便认为识别效果越好,反之效果越差。
后面会根据损失反向求导训练权值W,直到损失趋于0,或不再下降为止。
二.
1.多类SVM损失(支持向量机):
SVM损失计算了所有不正确的例子,将所有不正确的类别的评分,与正确类别的评分之差加1(可以不是1,一般取一),将得到的数值与0作比较,取两者中的最大值。然后将所有的数值进行求和。用平均值来代替不会影响结果。
Sj为错误类别得分,Yj为正确类别得分。
当正确时,Sj较低,Syj较高,想减完得分较低或者为负数。
与0比较求最大时,取0或者很低的得分。这样损失值便会很低,说明分类比较成功。
当错误时,正好相反。
2.Softmax分类器:
也就是一般化的逻辑斯蒂回归,他是在这些分数的基础上表明损失的一种不同的函数形式,这种解释就是说他是在这些分数基础上实现的,这些分数不是随机的,也不是表明某种边界。从一个问题出发,我们有特定的解读方式,这种方式有一定的规则,这些分数是对应不同类未经标准化的对数概率。
与SVM不同,softmax是将得分转化为概论,即样本图片是每个类得概率。得分高得概论高,得分低的概率低
三.比较
可以看出 SVM损失函数是所有项之和而Softmax则是将损失转化为各项的概论。