cs231n笔记(3)—误差函数

本文介绍了两种常用的损失函数:多类SVM损失和支持向量机及Softmax分类器。SVM损失函数通过计算不正确的例子与正确例子之间的得分差值并加1来评估模型表现,而Softmax则将得分转化为概率分布,以此衡量分类效果。
摘要由CSDN通过智能技术生成

一.

损失函数有时也叫代价函数或者误差函数。

个人理解就是将样本图片输入网络后会得到一个得分,

再将得分输入损失函数会得到一个损失,

损失越低便认为识别效果越好,反之效果越差。

后面会根据损失反向求导训练权值W,直到损失趋于0,或不再下降为止。


二.

1.多类SVM损失(支持向量机)


SVM损失计算了所有不正确的例子,将所有不正确的类别的评分,与正确类别的评分之差加1(可以不是1,一般取一),将得到的数值与0作比较,取两者中的最大值。然后将所有的数值进行求和。用平均值来代替不会影响结果。


Sj为错误类别得分,Yj为正确类别得分。

当正确时,Sj较低,Syj较高,想减完得分较低或者为负数。

与0比较求最大时,取0或者很低的得分。这样损失值便会很低,说明分类比较成功。

当错误时,正好相反。


2.Softmax分类器:


也就是一般化的逻辑斯蒂回归,他是在这些分数的基础上表明损失的一种不同的函数形式,这种解释就是说他是在这些分数基础上实现的,这些分数不是随机的,也不是表明某种边界。从一个问题出发,我们有特定的解读方式,这种方式有一定的规则,这些分数是对应不同类未经标准化的对数概率。


与SVM不同,softmax是将得分转化为概论,即样本图片是每个类得概率。得分高得概论高,得分低的概率低



三.比较


可以看出 SVM损失函数是所有项之和而Softmax则是将损失转化为各项的概论。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值