线性代数

第一章 线性方程组与矩阵

线性方程组的初等变换

含义:

  • 交换两个方程次序
  • 用一个非零常数乘以某个方程
  • 用一个数乘一个方程后加到另一个方程上

系数矩阵

方程组左端的系数排成的数表称为系数矩阵

增广矩阵

将方程组右侧的常数添加到系数矩阵上称为增广矩阵

行阶梯矩阵

特点:

  • 可画出一条阶梯线,线的下方元素均为0
  • 每个台阶只有一行,阶梯竖线后面的第一个元素不为0,这样的矩阵称为行阶梯矩阵

行最简形矩阵

特点:

除了满足行阶梯矩阵的特点外,还满足:每个非零行的首个元素为1,且这些元素所在的列的其他元素都为0

行向量,列向量

对角矩阵

特点:

  • 除了左上角到右下角的直线(称为主对角线)上的元素外的元素全是0,常记为diag( λ λ 1, λ λ 2,……, λ λ n)

数量矩阵

当对角矩阵的对角元素全部相等时,称为n阶数量矩阵

单位矩阵

数量矩阵的主对角线上的元素全为1时,称为n阶单位矩阵

上三角矩阵

主对角线下方的元素全为0时

同型矩阵

行数和列数分别相同的矩阵

矩阵的加法运算和数乘运算

加法满足交换律和结合律;数乘满足分配律结合律交换律

矩阵的乘法运算

  1. Am*sBs*n=Cm*n
  2. 矩阵的乘法满足交换律和消去律
  3. (AB)k ≠ AkBk, (A+B)2 ≠A2+2AB +B2, (A+B)(A-B) ≠ A2-B2。只有当A,B可交换时,上述各式的等号才成立

矩阵的m次多项式

1.f(A)=a0+a1A+a2A2+…+amAm
2.性质:

  • 矩阵的任何两个矩阵多项式可交换
  • 如果A=diag( λ λ 1, λ λ 2,……, λ λ n),则f(A)=diag(f( λ λ 1),f( λ λ 2),……,f( λ λ n))

转置矩阵

运算律:

  • (AT)T=A
  • (A+B)T=ATBT
  • ( λ λ A)T= λ λ AT
  • (AB)T=BTAT

对称矩阵

AT=A
对称矩阵的基本性质

  • 设A是一个m × × n矩阵,则AAT和ATA都是对称矩阵
  • 设A,B为n阶对称阵,则AB为对称阵的充要条件是A与B可交换

反对称矩阵

AT=-A

可逆矩阵

定义:设A与B是n阶方阵,若AB=BA=E,则称A是可逆的,B是A的逆矩阵
特性

  • 若A可逆,则A的逆矩阵唯一
  • 对角矩阵 Λ Λ =diag( λ λ 1, λ λ 2,……, λ λ n)是可逆的,且 Λ Λ -1=diag( λ λ 1-1, λ λ 2-1,……, λ λ n-1)

运算律:

  • (A-1)-1=A
  • (AT)-1=(A-1)T
  • ( λ λ A)-1=(1/ λ λ )A
  • (AB)-1=B-1A-1

分块矩阵

定义:我们将矩阵A用一些纵线和横线分成若干个小矩阵,每个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵

分块矩阵的运算:

  • 分块矩阵的加法:设A,B为同型矩阵,且采用相同的分块法,则类似于矩阵的加法
  • 分块矩阵的数乘:类似于矩阵的数乘
  • 分块矩阵的乘法: 类似于矩阵的乘法
  • 分块矩阵的转置:类似于矩阵的转置,不过不但要将行列互换,而且行列互换后的各子块都要相应进行转置
  • 分块矩阵的逆运算:分块对角矩阵的逆运算和对角矩阵的逆运算类似。若
    D=
    {ACOB} { A O C B }

    D1 D − 1 =
    {A1B1CA1OB1} { A − 1 O − B − 1 C A − 1 B − 1 }

矩阵的初等变换

初等行变换:

  • 交换两行
  • 以非零实数乘以某行
  • 将某行乘以一个常数加到另一行上

初等列变换:

  • 交换两列
  • 以非零实数乘以某列
  • 将某列乘以一个常数加到另一列上

矩阵等价

矩阵A通过有限次初等行(列)变换为矩阵B,称矩阵A与B行(列)等价,记为 ArB A → r B ( AcB A → c B ),如果A通过有限次初等行变换与初等列变换化为矩阵B,称A与B等价,记为 AB A → B
矩阵等价具有自反性,对称性,传递性

标准型

{ErOOO} { E r O O O }
称为矩阵的标准型,左上角是一个单位矩阵
任一矩阵都等价于一个标准型

初等矩阵

定义:对单位矩阵实行一次初等变换后所得到的矩阵称为初等矩阵

  • E(i,j)表示 rirj r i ↔ r j cicj c i ↔ c j
  • E(i(k))表示 ri×k r i × k ci×k c i × k
  • E(i,j(k))表示 ri r i +k rj r j cj c j +k ci c i

初等矩阵的逆矩阵
- E(i,j)1 E ( i , j ) − 1 =E(i,j)
- E(i(k))1 E ( i ( k ) ) − 1 =E(i( k1 k − 1 ))
- E(i,j(k))1 E ( i , j ( k ) ) − 1 = E(i,j(-k))

other:初等矩阵左乘A表示初等行变换,EA
初等矩阵右乘A表示初等列变换,AE

利用初等行变换求逆矩阵

A1 A − 1 (A|E)=(E| A1 A − 1 )
即把(A|E)通过初等行变换变成左边是E,则右边就是A的逆矩阵了

第二章 行列式

2.1行列式的定义

二阶与三阶行列式

a11a21a12a22=a11a22a12a21 | a 11 a 12 a 21 a 22 | = a 11 a 22 − a 12 a 21

称为由二阶方阵A所确定的二阶行列式,即为D,还可即为detA或|A|

a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a21a32a13a13a22a31a12a21a33a23a32a11 | a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 | = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 23 a 32 a 11

余子式

Mij M i j 为行列式D中划去元素 aij a i j 所在的第i行,第j列后,余下的 (n1)2 ( n − 1 ) 2 个元素按照原来的位置次序构成的 n-1 阶行列式,称为元素 aij a i j 的余子式

代数余子式

Aij=(1)i+jMij A i j = ( − 1 ) i + j M i j 称为元素 aij a i j 的代数余子式

多阶行列式

n阶矩阵A的行列式D=detA=|A|可表示为它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 D=ai1Ai1+ai2Ai2+...+ainAin=a1jA1j+a2jA2j+...+anjAnj D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j
(i=1,2,…,n)(j=1,2,…,n)

Tips:若行列式中某行(列)中有较多的零元素,则按该行(列)展开能简化计算

2.2行列式的性质

行列式的7大性质

  • 性质1: D=DT D = D T ,即行列式与它的转置行列式相等
  • 性质2:互换行列式的两行(列),行列式变号
  • 性质3:用k乘以行列式的某一行(列)得到的行列式等于原来的行列式的k倍
  • 性质4:若行列式的某一行(列)的元素都是两数之和,则该行列式等于两个行列式的和。比如

    a11a21+b21a31a12a22+b22a32a13a23+b23a33=a11a21a31a12a22a32a13a23a33+a11b21a31a12b22a32a13b23a33 | a 11 a 12 a 13 a 21 + b 21 a 22 + b 22 a 23 + b 23 a 31 a 32 a 33 | = | a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 | + | a 11 a 12 a 13 b 21 b 22 b 23 a 31 a 32 a 33 |

  • 性质5:若将行列式的某一行(列)乘以数k加到另一行(列),则行列式的值不变

  • 性质6:行列式中的第i行(列)元素与第j行(列)( ji j ≠ i )对应元素的代数余子式乘积之和为0
  • 性质7:设A,B为n阶方阵,C为m阶方阵,则
    1.| AT A T |=|A|
    2.| λ λ A|= λn λ n |A|
    3.
    ADOC=|A||C| | A O D C | = | A | | C |

    ODAC=(1)mn|A||C| | O A D C | = ( − 1 ) m n | A | | C |

    4.|AB|=|A| |B|

推论:1.行列式如果有两行(列)元素成比例,则此行列式等于零。
2.若行列式中某行(列)的元素全为零,则此行列式等于零

Tips:计算行列式时,若行列式D中的每一行(列)中的元素之和相同,则可将各列(行)加到第一列(行)提取公因子。

范德蒙德行列式

Dn=1x1x21...xn111x2x22...xn12...............1xnx23...xn1n=ni>j1(xixj) D n = | 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x 3 2 . . . . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 | = ∏ n ≥ i > j ≥ 1 ( x i − x j )

2.3行列式的应用

克拉默(Cramer)法则

如果线性方程组的系数行列式D 0,则方程组有唯一解
xj=DjD x j = D j D
其中 Dj D j 是把行列式D中的第j列替换成方程Ax=b中的b

一些定理

  • 如果线性方程组无解或有两个不同的解,则它的系数行列式必为零
  • 如果齐次线性方程组的系数行列式为D 0,则齐次线性方程组只有零解
  • 若其次线性方程组有非零解,则它的系数行列式必为零

伴随矩阵

定义:设 A=aij)n×n A = ( a i j ) n × n , 元素a_{ij}的代数余子式 Aij A i j 按如下的顺序构成一个n阶矩阵

Dn=A11A12...A1nA21A22...A2n............An1An2...Ann D n = | A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 . . . . . . . . . . . . A 1 n A 2 n . . . A n n |

称为矩阵A的伴随矩阵,记为 A A ∗
注意:并不是 aij a i j 的位置直接放 Aij A i j ,还要经过 转置

定理:

  • 定理2.6: AA=AA=|A|E A A ∗ = A ∗ A = | A | E
  • 推论1: A1=A|A| A − 1 = A ∗ | A |
  • 推论2: |A1|=1|A| | A − 1 | = 1 | A |
  • 推论3: (A)1=A|A| ( A ∗ ) − 1 = A | A |
  • 推论4: A=|A|A1 A ∗ = | A | A − 1
  • 推论5: (A)1=(A1) ( A ∗ ) − 1 = ( A − 1 ) ∗

矩阵的秩

子式的定义:在 m×n m × n 阶矩阵A中任取k行k列( km,kn k ≤ m , k ≤ n ),位于这些行列式交叉处的 k2 k 2 个元素,不改变它们在A中所处的位置次序而得到的k阶行列式,称为A的k阶子式

矩阵的秩:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A),并规定若A=O,则R(A)=0

满秩矩阵:显然, R(A)min{m,n} R ( A ) ≤ m i n { m , n } ,若R(A)=min{m,n},称A为满秩矩阵

矩阵的秩的性质

  • 性质1: R(AT)=R(A) R ( A T ) = R ( A )
  • 性质2:设A经过初等变换得到B,则R(A)=R(B)
  • 性质3:设A为 m×n m × n 矩阵,则R(A)=r的冲要条件是A的标准型为
    ErOOOm×n | E r O O O | m × n
    ,其中 Er E r 为r阶单位阵
  • 性质4:设 Am×n,Bn×s,Ct×n A m × n , B n × s , C t × n
    (1)若R(A)=n(此时称A为列满秩),则R(AB)=R(B)
    (2)若R(A)=m(此时称A为行满秩),则R(CA)=R(C)
  • 性质5:
    (1)设 Am×n,Bm×s A m × n , B m × s ,则max{R(A),R(B)} R(A,B) R(A)+R(B)
    (2)设 Am×n,Bm×n A m × n , B m × n ,则R(A+B) R(A)+R(B)
    (3设 Am×n,Bn×s A m × n , B n × s ,则R(A)+R(B)-n R(AB) min{R(A),R(B)}
  • 性质6:设A为n阶方阵,则
    R(A)=n,R(A)=n1,R(A)=n10,R(A)<n1(1) (1) R ( A ∗ ) = { n , R ( A ) = n 1 , R ( A ) = n − 1 0 , R ( A ) < n − 1

第三章向量组的线性相关性

3.1线性方程组解的判定

非齐次线性方程组解的判定

n元线性方程组Ax=b, 增广矩阵B=(A|b)
(1)无解的充分必要条件是R(A) < < <script type="math/tex" id="MathJax-Element-98"><</script>R(B)
(2)有唯一解的充分必要条件是R(A)=R(B)=n
(3)有无穷多个解的充分必要条件是R(A)=R(B) < < <script type="math/tex" id="MathJax-Element-99"><</script>n

通解:若R(A)=R(B)=r < < <script type="math/tex" id="MathJax-Element-100"><</script>n,则方程组含有的n-r个独立任意常数的解可以表示方程组的所有解,称为方程组的通解

求解非齐次线性方程组Ax=b的步骤

将增广矩阵B=(A|b)用初等行变换变成行阶梯形矩阵,便可判断其有没有解,若有,则再通过初等行变换变换成行最简形矩阵,写出同解方程组(用自由未知量表示),便可写出其通解

自由未知量:将线性方程写成”x=……”的形式,则不在左边的x称为自由未知量

齐次线性方程组解的判定及求解

判定
n元齐次线性方程组Ax=0有非零解的充分必要条件是R(A) < < <script type="math/tex" id="MathJax-Element-101"><</script>n,只有零解的充要条件是R(A)=n,Ax=b有非零解表示有无穷多个解

Tips:不用特别记上面这个,齐次线性即非齐次中R(A)=R(B)的情况

求解:类似于非齐次,只不过只要用系数矩阵A来进行初等行变换就好了

矩阵方程有解的判定

矩阵方程AX=B有解的充分必要条件是R(A)=R(A|B)

Tips:这个也不用特别记,和非齐次差不多

3.2向量及其线性组合

列向量,行向量,零向量以及加法和数乘运算

太简单了,略(本章所讲的向量默认列向量)

向量组的线性组合与线性表示

线性组合:给定向量组A: α1,α2,...,αn α 1 , α 2 , . . . , α n ,对于任何一个实数 k1,k2,...,kn k 1 , k 2 , . . . , k n ,向量 k1α1+k2α2+...+knαn k 1 α 1 + k 2 α 2 + . . . + k n α n 称为向量组A的一个线性组合, k1,k2,...,kn k 1 , k 2 , . . . , k n 称为这个线性组合的组合系数

线性表示若存在一组向量和数,使得b= λ1α1+λ2α2+...+λnαn λ 1 α 1 + λ 2 α 2 + . . . + λ n α n ,则称向量b能由向量组A线性表示

线性表示的充要条件:向量b能由向量组 α1,α2,...,αn α 1 , α 2 , . . . , α n 线性表示的充要条件是矩阵A( α1,α2,...,αn α 1 , α 2 , . . . , α n )的秩等于矩阵B=( α1,α2,...,αn α 1 , α 2 , . . . , α n ,b)的秩

Tips:不用特别记,和非线性解的判定条件差不多

等价向量组

设有两个向量组A和B,若B组中的每个向量都能由向量组A线性表示,就称向量组B能由向量组A线性表示,若向量组A,B能相互线性表示,则称向量组A与B等价。

若B=AK,则矩阵K称为这一线性表示的系数矩阵

向量组线性表示的充要条件:向量组B: β1,β2,...,βs β 1 , β 2 , . . . , β s 能由向量组A: α1,α2,...,αm α 1 , α 2 , . . . , α m 线性表示的充要条件是矩阵A=( α1,α2,...,αm α 1 , α 2 , . . . , α m )的秩等于矩阵(A,B)=( α1,α2,...,αm α 1 , α 2 , . . . , α m β1,β2,...,βs β 1 , β 2 , . . . , β s )的秩,即R(A)=R(A,B)

向量组A,B等价的充要条件:R(A)=R(B)=R(A,B)

定理:向量组B: β1,β2,...,βs β 1 , β 2 , . . . , β s 能由向量组A: α1,α2,...,αm α 1 , α 2 , . . . , α m 线性表示,则R(B) R(A)

3.3向量组的线性相关性

线性相关

若存在两个不全为0的常数 k1,k2 k 1 , k 2 ,使得 k1α1+k2α2=0α1,α2 k 1 α 1 + k 2 α 2 = 0 ( α 1 , α 2 为 两 个 向 量 ) ,则称 α1,α2 α 1 , α 2 线性相关;反之,若不存在,则线性无关

几点说明
- 含有零向量的向量组必线性相关
- 向量组只含一个向量时,若该向量为0,则向量组线性相关,若不为0,则线性无关
- 两个非零向量 α1,α2 α 1 , α 2 线性相关的充分必要条件是存在常数k使得 α1=kα2 α 1 = k α 2

线性相关的充要条件

定理1:向量组A线性相关的充要条件是A中至少有一个向量可以由其余的向量线性表示

定理2:向量组 α1,α2,...,αm α 1 , α 2 , . . . , α m 线性相关的充要条件是它所构成的矩阵A-( α1,α2,...,αm α 1 , α 2 , . . . , α m )的秩小于向量的个数m;向量组 α1,α2,...,αm α 1 , α 2 , . . . , α m 线性无关的充要条件是R(A)=m

Tips:定理2同样适用于行向量组,秩也要小于向量个数才线性相关

几个简单结论

定理1:设向量组A: α1,α2,...,αm α 1 , α 2 , . . . , α m 线性相关,则向量组B: α1,α2,...,αm,αm+1 α 1 , α 2 , . . . , α m , α m + 1 也线性相关

定理2:若有一个向量组线性无关,则它的任何部分组都线性无关

定理3:设向量组A: α1,α2,...,αm α 1 , α 2 , . . . , α m 线性无关,而向量组B: α1,α2,...,αm,b α 1 , α 2 , . . . , α m , b 线性相关,则向量b必能由向量组A线性表示,且表达式是唯一的

3.4向量组的最大无关组与秩

最大线性无关向量组与秩

若向量组A中存在r个向量 α1,α2,...,αr α 1 , α 2 , . . . , α r ,满足:
(1)向量组 A0 A 0 α1,α2,...,αr α 1 , α 2 , . . . , α r 线性无关
(2)向量组A中任意一个r+1个向量(如果有的话)都线性相关,则称向量组 A0 A 0 是向量组A的一个最大线性无关向量组(简称最大无关组)

向量组的秩:向量组A的最大无关组所含的向量个数称为向量组A的秩,记为 RA R A

几点说明
- 只含零向量的向量组没有最大无关组,即它的秩为0
- 含有m个非零向量组的秩r满足 1rm 1 ≤ r ≤ m
- 向量组 α1,α2,...,αm α 1 , α 2 , . . . , α m 线性无关的充要条件是R( α1,α2,...,αm α 1 , α 2 , . . . , α m )=m
- 向量组 α1,α2,...,αm α 1 , α 2 , . . . , α m 线性相关的充要条件是R( α1,α2,...,αm α 1 , α 2 , . . . , α m ) < < <script type="math/tex" id="MathJax-Element-1882"><</script>m

矩阵的秩与向量组秩的关系

矩阵的秩等于它的列向量组的秩,也等于它行向量组的秩

列向量最大无关组的具体求法

将矩阵A用初等行变换化为行阶梯形矩阵B,即可找出B的最高阶非零子式所在的列,其对应于A所在的列向量就是A的列向量组的一个最大无关组

Tips:向量组的最大无关组不一定唯一

  • 21
    点赞
  • 87
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值