【线性代数】第一章 行列式 ,二阶与三阶行列式,全排列及逆序数,n阶行列式的定义,对换及行列式的性质

在以往的学习中,我们接触过二元、三元等简单的线性方程组. 但是,从许多实践或理论问题里导出的线性方程组常常含有相当多的未知量,并且未知量的个数与方程的个数也不一定相等.

我们先讨论未知量的个数与方程的个数相等的特殊情形. 在讨论这一类线性方程组时,我们引入行列式这个计算工具.

第一章  行列式

行列式是线性代数的一种工具! 学习行列式主要就是要能计算行列式的值.

内容提要   

§1  二阶与三阶行列式   

 §2  全排列及其逆序数   

 §3  n 阶行列式的定义     

§4  对换     

§5  行列式的性质     

§6  行列式按行(列)展开     

§7  克拉默法则

§1  二阶与三阶行列式

我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.

一、二元线性方程组与二阶行列式

请观察,此公式有何特点?

分母相同,由方程组的四个系数确定. 分子、分母都是四个数分成两对相乘再相减而得.

我们引进新的符号来表示“四个数分成两对相乘再相减”.

二阶行列式的计算 ——对角线法则 

即:主对角线上两元素之积-副对角线上两元素之积

例1,

二、三阶行列式

三阶行列式的计算法则——对角线法则实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.

注意:对角线法则只适用于二阶与三阶行列式.

例2

例3

§2  全排列及其逆序数

引例,用1、2、3三个数字,可以组成多少个没有重复数字的三位数?

问题 把 n 个不同的元素排成一列,共有多少种不同的排法?

定义   把 n 个不同的元素排成一列,叫做这 n 个元素的全排列.   n 个不同元素的所有排列的种数,通常用Pn 表示

.

3个不同的元素一共有3! =6种不同的排法

123,132,213,231,312,321

所有6种不同的排法中,只有一种排法(123)中的数字是按从小到大的自然顺序排列的,而其他排列中都有大的数排在小的数之前. 因此大部分的排列都不是“顺序”,而是“逆序”.

对于n 个不同的元素,可规定各元素之间的标准次序. n 个不同的自然数,规定从小到大为标准次序.

定义   当某两个元素的先后次序与标准次序不同时, 就称这两个元素组成一个逆序.

例如   在排列32514中,

思考题:还能找到其它逆序吗?

答:2和1,3和1也构成逆序.

定义   排列中所有逆序的总数称为此排列的逆序数.

.

奇排列:逆序数为奇数的排列.

偶排列:逆序数为偶数的排列.

思考题:符合标准次序的排列是奇排列还是偶排列?

答:符合标准次序的排列(例如:123)的逆序数等于零,因而是偶排列.

对于n 个不同的元素,可规定各元素之间的标准次序. n 个不同的自然数,规定从小到大为标准次序.

计算排列的逆序数的方法

§3  n 阶行列式的定义

一、概念的引入

所以,三阶行列式可以写成

二阶行列式有类似规律.下面将行列式推广到一般的情形.

二、n 阶行列式的定义

(3)  上三角形行列式 (主对角线下侧元素都为0)

(4)  下三角形行列式 (主对角线上侧元素都为0)

思考题:用定义计算行列式

思考题

§4  对换

一、对换的定义

定义  在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换.

将相邻两个元素对换,叫做相邻对换.

例如

备注

1相邻对换是对换的特殊情形.

2一般的对换可以通过一系列的相邻对换来实现.

3如果连续施行两次相同的对换,那么排列就还原了.

二、对换与排列奇偶性的关系

定理1 对换改变排列的奇偶性.

证明         先考虑相邻对换的情形.  

既然相邻对换改变排列的奇偶性,那么   

因此,一个排列中的任意两个元素对换,排列的奇偶性改变.

推论    奇排列变成标准排列的对换次数为奇数, 偶排列变成标准排列的对换次数为偶数.

证明   由定理1知,对换的次数就是排列奇偶性的变化次数,而标准排列是偶排列(逆序数为零),因此可知推论成立.

因为数的乘法是可以交换的,所以 n 个元素相乘的次序是可以任意的,即

经过一次对换是如此,经过多次对换还是如此. 所以,在一系列对换之后有

定理2   n 阶行列式也可定义为  

定理3   n 阶行列式也可定义为  

例1

例2  

用行列式的定义计算

三、小结

1. 对换改变排列奇偶性.2. 行列式的三种表示方法

§5  行列式的性质

一、行列式的性质

性质1

行列式中行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立.

性质2  互换行列式的两行(列),行列式变号.

推论  如果行列式有两行(列)完全相同,则此行列式为零.

证明 互换相同的两行,有 D=-D      ,所以D=0      


资料仅供学习使用

如有错误欢迎留言交流

上理高等教育教材课件库的其他专栏:

光电融合集成电路技术

C语言

单片机原理

模式识别原理

数字电子技术

自动控制原理传感器技术

模拟电子技术

数据结构

 概率论与数理统计

高等数学

传感器技术

智能控制

嵌入式系统

图像处理与机器视觉

热工与工程流体力学

数字信号处理

线性代数

关注上理高等教育教材课件库了解更多

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值