bert
chenmingwei000
这个作者很懒,什么都没留下…
展开
-
基于中文哪吒NEZHA的FLAT的命名实体识别实现与探讨(二)
接下来解释如何利用匹配到的词汇与模型进行融合的代码,首先利用匹配的词汇转原创 2020-08-10 22:17:28 · 788 阅读 · 0 评论 -
哪吒bert论文的讲解以及命名实体识别代码NEZHA:NEURAL CONTEXTUALLZED REPRESENTATION FOR CHINESE LANGUAGE UNDERSTANDING
摘要: 语训练模型由于能够获取深度上下文信息在多个自然语言理解获得巨大成功,这种模型通过预训练大量无标签语料得到。当前版本的NEZHA是基于BERT模型经过一系列改进验证得到的模型,其中改进的包括函数式位置编码FunctionalRelative Positional Encoding,全词mask策略,Whole Word Masking strategy,Mixed Precision Training,LAMB Optimizer。引言 ERNIE-Baidu利用e ML...翻译 2020-06-09 08:59:46 · 1329 阅读 · 0 评论 -
Albert 论文相关笔记
albert 的主要改进点在于两点:1、因式分解词汇embedding参数(当然和数学里边的因式分解不一样),这里采用了矩阵映射的方法,把大的词汇矩阵分解成两个小矩阵,把hidden_size与embedding_size进行分割,这个分割不需要增加一些无意义的参数增加,说实话这些好处都没有什么用处,作者在代码里就简单的做了矩阵的映射变换。2、另外一个就是夸层参数共享,这两个改进都在不影响精...原创 2019-12-25 15:55:32 · 393 阅读 · 0 评论 -
Al-bert利用自己训练数据集预训练以及测试LCQMC语义相似度测试(二)
`Al-bert利用自己训练数据集预训练以及测试LCQMC语义相似度测试## 标题(二)上一张讲解了怎么构造预训练的数据,这一章讲解训练过程,一起探讨与bert的区别1.2 run_pretraining.py 的讲解 我们仍然采用debug模式进行 bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_confi...原创 2019-12-19 11:07:16 · 2428 阅读 · 0 评论 -
Al-bert利用自己训练数据集预训练以及测试LCQMC语义相似度测试(一)
Al-bert利用自己训练数据集预训练以及测试LCQMC语义相似度测试## 标题数据预处理解析1.1 create_pretraining_data.py 解析 首先,albert还是利用了bert的训练方法,所以数据处理非常相似,除了利用全词模式的更改;本文章只针对代码进行解析;代码在github搜索就能得到 作者提供了一个样例数据,这样的话,其实是非常让用户方便的进行自己数...原创 2019-12-15 12:14:39 · 4134 阅读 · 2 评论