Quantization and Training of Neural Networks for EfficientInteger-Arithmetic-Only Inference量化学习

该论文提出了深度学习模型的量化方法,包括权重和激活值的8bit量化,以及关键的bias保持在32bit以减小精度损失。同时,它介绍了一套量化推理框架,适用于如Hexagon这样的整型硬件,并且提出与之配合的量化训练策略,以保持模型准确性。
摘要由CSDN通过智能技术生成

本片论文可谓是深度模型量化的经典之作,为此,虽有很多博主去解析,但还是想做个笔记记录学习成果;该论文共有如下贡献:

      1.提供了一个量化机制;量化了权重以及activations激活值为8bit整型数据,只有少数的bias量化为32bit整型,(思考bias的重要性,为何不量化为8bit,是否对结果有很大影响???)

    2.提供了量化推理框架,可以实现再整型运算的硬件上,例如e Qualcomm Hexagon

    3.我们提供了量化的训练框架,它是与推理框架共同设计,来减少与真实模型之间的accuracy的损失。

2.1. Quantization scheme

    量化推理

    量化机制是在推理时仅用整数运算,训练时使用使用浮点数,对于定义量化机制要对所有的,对于整型q以及对应的real value r是映射变换 affine mapping

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值