11. 背包问题求方案数 01背包变式 动态规划

题目

在这里插入图片描述

题解思路

在求最大值的过程中 附加求方案数的dp 即可

由于定义是使用至多 M 体积 达到的最大值 所以在 M 体积之前可能也存在最优方案 所以要往回循环判断一次

参考文章

AC代码
//一维写法
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <map>
#include <string>
using namespace std;

const  int  INF =  0x3f3f3f3f;
const  int  mod = 1e9 + 7 ;

int f[1010];
int cnt[1010];

int v[1010] , w[1010] ;

int main ()
{
    ios::sync_with_stdio(false);
    int n,m;
    cin>>n>>m;
    for (int i = 1 ; i <= n ; i++ )
    {
        cin>>v[i]>>w[i];
    }
    cnt[0] = 1 ;
    for (int i = 1 ;i <= n ; i++ )
    {
        for (int j = m ; j >= v[i] ; j-- )
        {
            int tmp = max( f[j] , f[j-v[i]] + w[i] );
            if ( f[j] > f[j-v[i]] + w[i] )
                cnt[j] = ( cnt[j]  ) % mod ;
            else if ( f[j] < f[j-v[i]] + w[i])
                cnt[j] = ( cnt[j-v[i]] ) % mod ;
            else
                cnt[j] = (cnt[j] + cnt[j-v[i]] ) % mod ;
            f[j] = tmp;
        }
    }
    for (int i = m -1 ; i >= 0 ; i-- )
        if ( f[i] == f[m] )
            cnt[m] = ( cnt[i] + cnt[m] ) % mod ;


    cout<<cnt[m]<<"\n";

    return 0 ;
}



//二维写法

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <map>
#include <string>
using namespace std;

const  int  INF =  0x3f3f3f3f;
const  int  mod = 1e9 + 7 ;

int f[1010][1010];
int cnt[1010][1010];

int v[1010] , w[1010] ;

int main ()
{
    ios::sync_with_stdio(false);
    int n,m;
    cin>>n>>m;
    for (int i = 1 ; i <= n ; i++ )
    {
        cin>>v[i]>>w[i];
    }
    cnt[0][0] = 1 ;
    for (int i = 1 ;i <= n ; i++ )
    {
        for (int j = m ; j >= 0 ; j-- )
        {
            f[i][j] = f[i-1][j] ;
            if ( j >= v[i] )
            {
                f[i][j] = max( f[i][j] , f[i-1][j-v[i]] + w[i] );
                if ( f[i-1][j] > f[i-1][j-v[i]] + w[i] )
                    cnt[i][j] = ( cnt[i-1][j]  + cnt[i][j] ) % mod ;
                else if ( f[i-1][j] < f[i-1][j-v[i]] + w[i])
                    cnt[i][j] = ( cnt[i-1][j-v[i]] + cnt[i][j] ) % mod ;
                else
                    cnt[i][j] = (cnt[i-1][j] + cnt[i-1][j-v[i]] + cnt[i][j] ) % mod ;
            }else
                   cnt[i][j] = ( cnt[i-1][j] + cnt[i][j] ) % mod ;

        }
    }
    for (int i = m -1 ; i >= 0 ; i-- )
        if ( f[n][i] == f[n][m] )
            cnt[n][m] = ( cnt[n][i] + cnt[n][m] ) % mod ;


    cout<<cnt[n][m]<<"\n";

    return 0 ;
}



作者:陈末
链接:https://www.acwing.com/activity/content/code/content/1802419/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值