1057. 股票买卖 IV 状态机模型 恰好体积类问题 动态规划

题目

在这里插入图片描述

题解思路

当买入时 总值 + w[ i ] 卖出时 总值 - w [ i ] 就自动换算利润了

一开始没看清

很自然的定义 f [ i ] [ j ] [ 0 ] 不持有 f [ i ] [ j ] [ 1 ] 持有
考虑前 i 天的股票,第 i 天的 决策 是 k ( 0 1 ),且完成的 完整交易数 为 j 的方案

再分析两个状态之间的交互情况 推出转移方程

大细节

这里是定义的 完整交易数 也就是恰好问题

真正的答案就需要再搜索出来
而且初始化也要做好 (不然得不出答案 )
转移起点初始为 0 无关非法 初始为 无穷 (max为负 min为正 )

参考文章

AC代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <map>
#include <string>
using namespace std;

const  int  INF =  0x3f3f3f3f;

int f[10010][110][3];

int main ()
{
    ios::sync_with_stdio(false);
    memset(f, -0x3f, sizeof f);
    int n,m;
    cin>>n>>m;
    for (int i = 0 ; i <= n ; i++ )
        f[i][0][0] = 0 ;
    for (int i = 1 ; i <= n ; i++ )
    {
        int t;
        cin>>t;
        for (int j = m ; j >= 1  ; j-- )
        {
            f[i][j][0] = max( f[i-1][j][0] , f[i-1][j][1] + t );
            f[i][j][1] = max( f[i-1][j-1][0] - t , f[i-1][j][1] );
        }
    }
    int ans = 0 ;
    for (int i = 0 ; i <= m ; i++ )
        ans = max(f[n][i][0] , ans );
    cout<<ans<<"\n";
    return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值