Jupyter Notebook的聚类分析

一、什么是聚类分析?

  在Jupyter Notebook中进行聚类分析是一种常见的数据分析任务。聚类分析是一种无监督学习方法,用于将数据集划分为多个组或簇,使得同一簇中的数据点彼此相似,而不同簇中的数据点则不相似。以下是一个使用Python和Jupyter Notebook进行聚类分析的示例,主要使用流行的数据科学库,如Pandas、Scikit-learn和Matplotlib。

二、聚类示例

利用不同小麦种子的特征数据进行聚类,聚类算法要求实现KMeans、Birch、DBSCAN。

安装必要的库

如果你还没有安装这些库,可以使用以下命令来安装:

                            pip install pandas scikit-learn matplotlib seaborn

导入库并加载数据

首先,我们需要导入必要的库并加载数据集。

KMeans聚类结果可视化  

Birch聚类结果可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值