上文讲了前缀和,现在我们再来看一下差分,差分其实就是前缀和的逆运算。所以,差分和前缀和一样,也包括一维和二维。
那么,我们先来看看一维差分,一维差分其实就是一维前缀和的逆运算,如下图,A是B的前缀和,B是A的差分:
那么,一维差分一般用来干嘛呢?
假设我们已经得到了B数组,那么我们可以用O(n)的时间对B数组求前缀和,得到A数组,另外,给定一个区间[l,r],让我们对A数组中在此区间内所有的数都加上C(即Al+C~Ar+C),对于这个问题,如果我们采用暴力来解决就要花O(n)的时间,但是,如果采用差分来解决就只需要花O(1)的时间,时间大大减短。那么,现在我们再来思考一下,A数组在[l,r]区间里所有的数都加上C,对B数组有什么影响呢?如下图,Bl+C以后,A数组中L以后的数就都会加上C(即Al+C~An+C),但是,题目只要求在区间[l,r]的数加上C,区间以外的要保持不变,所以,为了满足这个要求,我们要让B数组在r+1的位置减去C,这样,A数组中r+1以后的数减去C后,刚好和前面加C抵消掉。
、
下面,我们来看一个例题,更好的理解一维差分。
题目:输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数1,r,q,表示将序列中[l,r]之间的每个数加上C。请你输出进行完所有操作后的序列。
输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数, r, c, 表示一个操作。
输出格式
共一行,包含n个整数,表示最终序列。
数据范围
1≤n,m≤100000,
1≤l≤r≤n,
- 1000< c≤1000,
- 1000 <整数序列中元素的值< 1000
输入:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出:
3 4 5 3 4 2
具体代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int a[N],b[N];
int n,m;
void insert(int l,int r,int c){//插入函数
b[l]+=c;
b[r+1]-=c;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) insert(i,i,a[i]);//刚开始假设A数组全为0,得到A数组的值后,相当于A数组在[n,n]区间插入a[n]
while(m--){
int l,r,c;
scanf("%d%d%d",&l,&r,&c);
insert(l,r,c);
}
for(int i=1;i<=n;i++) b[i]+=b[i-1]; //用B数组求前缀和得到原数组 ,现在B数组就是自己的前缀和
for(int i=1;i<=n;i++) printf("%d ",b[i]);//输出
return 0;
}
现在,我们再来看看二维差分,二维差分也是二维前缀和的逆运算。
这里,我们直接通过例题来理解
题目:
输入-个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2,c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数n.m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含5个整数x1, y1, x2,y2,c,表示一个操作。
输出格式
共n行,每行m个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1Sn,m≤1000,
1≤q≤100000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
- 1000< cS 1000,
- 1000 <矩阵内元素的值≤1000
输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
具体代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int a[N][N],b[N][N];
int n,m,q;
void insert(int x1,int y1,int x2,int y2,int c){//插入函数
b[x1][y1]+=c;
b[x2+1][y1]-=c;
b[x1][y2+1]-=c;
b[x2+1][y2+1]+=c;
}
int main() {
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);//输入
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
insert(i,j,i,j,a[i][j]);//刚开始假设A数组为0,得到A数组值后,相当于在[i][j]-[i][j]区间插入a[i][j]
}
}
while(q--){
int x1,y1,x2,y2,c;
cin>>x1>>y1>>x2>>y2>>c;
insert(x1,y1,x2,y2,c);//插入操作
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];//B数组变为B数组的前缀和
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d ",b[i][j]);//输出
}
puts("");//将“\0”转换为回车换行
}
return 0;
}