差分(含例题及代码)

上文讲了前缀和,现在我们再来看一下差分,差分其实就是前缀和的逆运算。所以,差分和前缀和一样,也包括一维和二维。

那么,我们先来看看一维差分,一维差分其实就是一维前缀和的逆运算,如下图,A是B的前缀和,B是A的差分:

那么,一维差分一般用来干嘛呢?

假设我们已经得到了B数组,那么我们可以用O(n)的时间对B数组求前缀和,得到A数组,另外,给定一个区间[l,r],让我们对A数组中在此区间内所有的数都加上C(即Al+C~Ar+C),对于这个问题,如果我们采用暴力来解决就要花O(n)的时间,但是,如果采用差分来解决就只需要花O(1)的时间,时间大大减短。那么,现在我们再来思考一下,A数组在[l,r]区间里所有的数都加上C,对B数组有什么影响呢?如下图,Bl+C以后,A数组中L以后的数就都会加上C(即Al+C~An+C),但是,题目只要求在区间[l,r]的数加上C,区间以外的要保持不变,所以,为了满足这个要求,我们要让B数组在r+1的位置减去C,这样,A数组中r+1以后的数减去C后,刚好和前面加C抵消掉。

下面,我们来看一个例题,更好的理解一维差分。

题目:输入一个长度为n的整数序列。

接下来输入m个操作,每个操作包含三个整数1,r,q,表示将序列中[l,r]之间的每个数加上C。请你输出进行完所有操作后的序列。

输入格式

第一行包含两个整数n和m。

第二行包含n个整数,表示整数序列。

接下来m行,每行包含三个整数, r, c, 表示一个操作。

输出格式

共一行,包含n个整数,表示最终序列。

数据范围

1≤n,m≤100000,

1≤l≤r≤n,

- 1000< c≤1000,

- 1000 <整数序列中元素的值< 1000

输入:

6 3

1 2 2 1 2 1

1 3 1

3 5 1

1 6 1

输出:

3 4 5 3 4 2

具体代码如下:

#include<bits/stdc++.h>
using namespace std; 
const int N=100010;
int a[N],b[N];
int n,m;
void insert(int l,int r,int c){//插入函数 
	b[l]+=c;
	b[r+1]-=c;
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)  scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)  insert(i,i,a[i]);//刚开始假设A数组全为0,得到A数组的值后,相当于A数组在[n,n]区间插入a[n] 
    while(m--){
    	int l,r,c;
    	scanf("%d%d%d",&l,&r,&c);
    	insert(l,r,c);
	}
	for(int i=1;i<=n;i++) b[i]+=b[i-1];  //用B数组求前缀和得到原数组 ,现在B数组就是自己的前缀和 
	for(int i=1;i<=n;i++)  printf("%d ",b[i]);//输出 
	return 0;
} 

现在,我们再来看看二维差分,二维差分也是二维前缀和的逆运算。

这里,我们直接通过例题来理解

题目:

输入-个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2,c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。

每个操作都要将选中的子矩阵中的每个元素的值加上c。

请你将进行完所有操作后的矩阵输出。

输入格式

第一行包含整数n.m,q。

接下来n行,每行包含m个整数,表示整数矩阵。

接下来q行,每行包含5个整数x1, y1, x2,y2,c,表示一个操作。

输出格式

共n行,每行m个整数,表示所有操作进行完毕后的最终矩阵。

数据范围

1Sn,m≤1000,

1≤q≤100000,

1≤x1≤x2≤n,

1≤y1≤y2≤m,

- 1000< cS 1000,

- 1000 <矩阵内元素的值≤1000

输入样例:

3 4 3

1 2 2 1

3 2 2 1

1 1 1 1

1 1 2 2 1

1 3 2 3 2

3 1 3 4 1

输出样例:

2 3 4 1

4 3 4 1

2 2 2 2

具体代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N=1010; 
int a[N][N],b[N][N];
int n,m,q;
void insert(int x1,int y1,int x2,int y2,int c){//插入函数 
	b[x1][y1]+=c;
	b[x2+1][y1]-=c;
	b[x1][y2+1]-=c;
	b[x2+1][y2+1]+=c;
}

int main() {
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++){
	for(int j=1;j<=m;j++){
		scanf("%d",&a[i][j]);//输入 
	}
}
for(int i=1;i<=n;i++){
	for(int j=1;j<=m;j++){
		insert(i,j,i,j,a[i][j]);//刚开始假设A数组为0,得到A数组值后,相当于在[i][j]-[i][j]区间插入a[i][j] 
	}
}
while(q--){
	int x1,y1,x2,y2,c;
	cin>>x1>>y1>>x2>>y2>>c;
	insert(x1,y1,x2,y2,c);//插入操作 
}
for(int i=1;i<=n;i++){
	for(int j=1;j<=m;j++){
		b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];//B数组变为B数组的前缀和 
	}
}
for(int i=1;i<=n;i++){
	for(int j=1;j<=m;j++){
		printf("%d ",b[i][j]);//输出 
	}
puts("");//将“\0”转换为回车换行 
}
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值