评价与推荐

  在互联网发达的今天,我们能够很容易通过互联网实现信息的共享,对某些对象(比如亚马逊上的图书、电驴上的电影等),很容易得到广大用户对他们的评价,这种评价是有意的(主动参与评价)或是无意的(通过买与不买来评价),而网站是能够活得这些评价信息的。因此我们可以抽象出这样的模型,对N件物品,一共有M个人进行了评价,于是对每一个人,都有一个评价N个物品的N维向量,而对每一件物品,都有一个受M个人评价的M维向量。这两种不同的评价的组织形式,对应着两种不同的推荐方式。

  首先,我们通过“欧几里得距离评价”或“皮尔逊相关度评价”两种方法中的某一种就能够得到任意两个对象(物品或人)的相关度,这种相关度表明这两者的相近程度。相近程度的作用在于决定权重,越相近的关系,在推荐决策中所显示的权重越大。事实上,就像人,当你听到对一件事物的很多评价的时候,你需要把它们按发言者的权重加权,得到最后的结果才是模拟出来的最符合你的眼观的评价。这样,通过相关度找到任意两者的相关关系,再通过相关关系来加权,并将其他物品加权求平均,得到每个物品相对于某个人的最有可能的价值,将最有价值的物品推荐给这个人,从而实现推荐。上述这种方法是所谓“基于人的过滤”,当物品数量很大而一个人所接触的物品只是其中很小一部分时,将物品作为过滤的标准是更为高效的一种做法。其基本思想仍然是从相关度计算出发,得到加权来做出综合评价,但在实现上,它以物品为相关度主体,先计算任意两个物品的相关度(这种计算量同样是巨大的,但更新上并没有太高速的要求),从而得到物品对物品的权重,当某个人产生了对其中某些物品的N维评价向量时,可以根据这个向量来计算其他任一物品相对于此人的估计价值,同样将最有价值的物品推荐给此客户。

  整体而言,评价与推荐都是通过对于用户评价数据的充分利用,从技术手段上,都是从相关度出发得到权重,再进行不同权重的集体投票,堪称是一种“民主”的技术啊哈哈。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值