评价与推荐

  在互联网发达的今天,我们能够很容易通过互联网实现信息的共享,对某些对象(比如亚马逊上的图书、电驴上的电影等),很容易得到广大用户对他们的评价,这种评价是有意的(主动参与评价)或是无意的(通过买与不买来评价),而网站是能够活得这些评价信息的。因此我们可以抽象出这样的模型,对N件物品,一共有M个人进行了评价,于是对每一个人,都有一个评价N个物品的N维向量,而对每一件物品,都有一个受M个人评价的M维向量。这两种不同的评价的组织形式,对应着两种不同的推荐方式。

  首先,我们通过“欧几里得距离评价”或“皮尔逊相关度评价”两种方法中的某一种就能够得到任意两个对象(物品或人)的相关度,这种相关度表明这两者的相近程度。相近程度的作用在于决定权重,越相近的关系,在推荐决策中所显示的权重越大。事实上,就像人,当你听到对一件事物的很多评价的时候,你需要把它们按发言者的权重加权,得到最后的结果才是模拟出来的最符合你的眼观的评价。这样,通过相关度找到任意两者的相关关系,再通过相关关系来加权,并将其他物品加权求平均,得到每个物品相对于某个人的最有可能的价值,将最有价值的物品推荐给这个人,从而实现推荐。上述这种方法是所谓“基于人的过滤”,当物品数量很大而一个人所接触的物品只是其中很小一部分时,将物品作为过滤的标准是更为高效的一种做法。其基本思想仍然是从相关度计算出发,得到加权来做出综合评价,但在实现上,它以物品为相关度主体,先计算任意两个物品的相关度(这种计算量同样是巨大的,但更新上并没有太高速的要求),从而得到物品对物品的权重,当某个人产生了对其中某些物品的N维评价向量时,可以根据这个向量来计算其他任一物品相对于此人的估计价值,同样将最有价值的物品推荐给此客户。

  整体而言,评价与推荐都是通过对于用户评价数据的充分利用,从技术手段上,都是从相关度出发得到权重,再进行不同权重的集体投票,堪称是一种“民主”的技术啊哈哈。

内容概要:本文详细介绍了如何使用Matlab对地表水源热泵系统进行建模,并采用粒子群算法来优化每小时的制冷量制热量。首先,文章解释了地表水源热泵的工作原理及其重要性,随后展示了如何设定基本参数并构建热泵机组的基础模型。接着,文章深入探讨了粒子群算法的具体实现步骤,包括参数设置、粒子初始化、适应度评估以及粒子位置速度的更新规则。为了确保优化的有效性实用性,文中还讨论了如何处理实际应用中的约束条件,如设备的最大能力制冷/制热模式之间的互斥关系。此外,作者分享了一些实用技巧,例如引入混合优化方法以加快收敛速度,以及在目标函数中加入额外的惩罚项来减少不必要的模式切换。最终,通过对优化结果的可视化分析,验证了所提出的方法能够显著降低能耗并提高系统的运行效率。 适用人群:从事暖通空调系统设计、优化及相关领域的工程师技术人员,尤其是那些希望深入了解地表水源热泵系统特性优化方法的专业人士。 使用场景及目标:适用于需要对地表水源热泵系统进行精确建模优化的情景,旨在找到既满足建筑负荷需求又能使机组运行在最高效率点的制冷/制热量组合。主要目标是在保证室内舒适度的前提下,最大限度地节约能源并延长设备使用寿命。 其他说明:文中提供的Matlab代码片段可以帮助读者更好地理解复现整个建模优化过程。同时,作者强调了在实际工程项目中灵活调整相关参数的重要性,以便获得更好的优化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值