knime使用 1

 

Knime简介

分类: 数据挖掘 IDE工具 1363人阅读 评论 (3) 收藏 举报

      一接触数据挖掘,用的就是Knime,什么Weka,SPSS,SAS基本都只限于听说过而已-_-.由于是基于eclipse的,对我来说自然是十分亲切,所以用起来也十分顺手,用了也有一段时间,打算做个阶段性小结,也顺便提高自己。

 


      Knime 是基于 Eclipse 的开源数据挖掘软件,它通过工作流的方式来完成数据仓库以及数据挖掘中数据的抽取 - 转换 - 加载( E xtract- T ransform- L oad )操作。其中工作流又是由各个功能便利的结点来完成,节点之间相互独立,可以单独执行并将执行后的数据传给下一个结点。界面如下:

Developer版Knime的主界面

 

 

    将左下角 Node Repository 区域的结点以此拖入中间的 Worflow Editor 形成工作流:

   workflow

结点的状态:

    结点上有三盏灯,就像红黄绿交通灯一样。当结点刚被拖入工作区的时候,红灯亮起表示数据无法通过,这时需要对结点进行配置,让它可以执行。右键单击结点选择“ Configure ”对结点进行配置;配置完成并且正确的话,便会亮起黄灯,表示准备就绪数据可以通过;再次右键单击结点选择“ Execute ”运行这个结点,当绿灯亮起时表示结点执行成功,数据已经通过并传给下一个结点。

 

结点分类,一共有以下几类结点:

      1、IO类结点,用于文件、表格、数据模型的输入和输出操作;

      2、数据库操作类结点,通过JDBC驱动对数据库进行操作;

      3、数据操作类结点,对上一结点传进来的数据进行筛选、变换以及简单的统计学计算等操作;

      4、数据视图类结点,提供了数据挖掘中最常用的表格及图形的展示,包括盒图,饼图,直方图,数据曲线等;

      5、统计学模型类结点,封装了统计学模型算法类的结点,如线性回归、多项式回归等;

      6、数据挖掘模型类结点,提供了贝叶斯分析,聚类分析,决策树,神经网络等主要的DM分类模型以及相应的预测器;

      7、META原子结点,该类结点可以对任意的及结点进行嵌套封装,还提供了后向传播、迭代、循环、交叉验证等方法;

      8、其他,可供我们自定义java代码段,以及设置规则引擎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值