考虑如下形式的二次丢番图方程:
x**2 – D*y**2 = 1
例如当 D=13时, x 的最小解是 649**2 – 13×180**2 = 1.
可以认为当D是平方数时方程无正整数解。
通过寻找当D = {2, 3, 5, 6, 7}时 x 的最小解,我们得到:
3**2 – 2×2**2 = 1
2**2 – 3×1**2 = 1
9**2 – 5×4**2 = 1
5**2 – 6×2**2 = 1
8**2 – 7×3**2 = 1
因此对于D ≤ 7, x 的最小解的最大值在D=5时取到。
找出D ≤ 1000中使得 x 的最小值取到最大的D的值。
参考:http://www.mathblog.dk/project-euler-66-diophantine-equation/
x_max = 0
D_res = 0
for D in range(2, 1001):
limit = int(pow(D, 0.5))
if limit * limit == D:
continue
m = 0
d = 1
a = limit
numm1 = 1
num = a
denm1 = 0
den = 1
while (num ** 2 - D * den ** 2 != 1):
m = d * a - m
d = (D - m * m) // d
a = (limit + m) // d
numm2 = numm1
numm1 = num
denm2 = denm1
denm1 = den
num = a * numm1 + numm2
den = a * denm1 + denm2
if num > x_max:
x_max = num
D_res = D
print(D_res)