一、 为什么要剪枝
1、未剪枝存在的问题
决策树生成算法递归地产生决策树,直到不能继续下去为止。这样产生的树往往对训练数据的分类很准确,但对未知的测试数据的分类却没有那么准确,即容易出现过拟合现象。解决这个问题的办法是考虑决策树的复杂度,对已生成的决策树进行简化,下面来探讨以下决策树剪枝算法。
2、剪枝的目的
决策树的剪枝是为了简化决策树模型,避免过拟合。
- 同样层数的决策树,叶结点的个数越多就越复杂;同样的叶结点个数的决策树,层数越多越复杂。
- 剪枝前相比于剪枝后,叶结点个数和层数只能更多或者其中一特征一样多,剪枝前必然更复杂。
- 层数越多,叶结点越多,分的越细致,对训练数据分的也越深,越容易过拟合,导致对测试数据预测时反而效果差,泛化能力差。
3、剪枝算法实现思路
剪去决策树模型中的一些子树或者叶结点,并将其上层的根结点作为新的叶结点,从而减少了叶结点甚至减少了层数,降低了决策树复杂度。
在决策树的建立过程中不断调节来达到最优,可以调节的条件有:
- 树的深度:在决策树建立过程中,发现深度超过指定的值,那么就不再分了。
- 叶子节点个数:在决策树建立过程中,发现叶子节点个数超过指定的值,那么就不再分了。
- 叶子节点样本数:如果某个叶子结点的个数已经低于指定的值,那么就不再分了。
- 信息增益量或Gini系数:计算信息增益量或Gini系数,如果小于指定的值,那就不再分了。
二、预剪枝
预剪枝是在决策树生成过程中,对树进行剪枝,提前结束树的分支生长。其中的核心思想就是,在每一次实际对结点进行进一步划分之前,先采用验证集的数据来验证划分是否能提高划分的准确性。如果不能,就把结点标记为叶结点并退出进一步划分;如果可以就继续递归生成节点。加入预剪枝后的决策树生成流程图如下:
优点:预剪枝可以有效降低过拟合现象,在决策树建立过程中进行调节,因此显著减少了训练时间和测试时间;预剪枝效率比后剪枝高。
缺点:预剪枝是通过限制一些建树的条件来实现的,这种方式容易导致欠拟合现象:模型训练的不够好。
三、后剪枝
在决策树建立完成之后再进行的,根据以下公式:
C = gini(或信息增益)*sample(样本数) + a*叶子节点个数
C表示损失,C越大,损失越多。通过剪枝前后的损失对比,选择损失小的值,考虑是否剪枝。
a是自己调节的,a越大,叶子节点个数越多,损失越大。因此a值越大,偏向于叶子节点少的,a越小,偏向于叶子节点多的。
后剪枝决策树通常比预剪枝决策树保留了更多的分支。一般情况下,后剪枝决策树的欠拟合风险很小,泛化性能往往由于预剪枝决策树,但是后剪枝过程是在生成完全决策树后进行的,并且要自下往上地对树中的非叶子节点逐一进行考察计算,因此训练时间的开销比为剪枝和预剪枝决策树都要大得多。
四、代码实现
1、未剪枝
可视化树:
import matplotlib.pyplot as plt
decisionNodeStyle = dict(boxstyle = "sawtooth", fc = "0.8")
leafNodeStyle = {"boxstyle": "round4", "fc": "0.8"}
arrowArgs = {"arrowstyle": "<-"}
# 画节点
def plotNode(nodeText, centerPt, parentPt, nodeStyle):
createPlot.ax1.annotate(nodeText, xy = parentPt, xycoords = "axes fraction", xytext = centerPt
, textcoords = "axes fraction", va = "center", ha