机器学习强基计划
文章平均质量分 96
🔥附全套代码🔥聚焦深度和广度:“深”在详细推导算法背后的数学原理;“广”在涵盖绝大多数模型:决策树、支持向量机、贝叶斯决策、强化学习等。🔥订阅后私信博主或在文章底部/博客主页添加博主微信进入技术交流群,每50订阅涨20元
优惠券已抵扣
余额抵扣
还需支付
¥89.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Mr.Winter`
同济大学控制科学与工程硕士,机器人算法工程师,主攻机器人运动规划方向,业余丰富各种技术栈。CSDN原力计划作者、官方内容合伙人;2023新星计划Pytorch赛道导师
展开
-
机器学习强基计划0-1:教程导读(附几十种经典模型源码合集)
订阅专栏前,请先看本文章简介原创 2022-07-13 15:09:02 · 7918 阅读 · 33 评论 -
机器学习强基计划0-2:什么是机器学习?和AI有什么关系?
用最通俗的例子和语言解释什么是机器学习,接着介绍机器学习和人工智能的关系,机器学习的用途以及学习路线原创 2022-07-18 07:44:22 · 5553 阅读 · 67 评论 -
机器学习强基计划0-3:数据集核心知识串讲,构造方法解析
用最通俗的例子和语言将机器学习中数据集的众多概念进行串讲,最后分析了数据集的三种构造方式原创 2022-07-22 07:49:06 · 1705 阅读 · 55 评论 -
机器学习强基计划0-4:通俗理解奥卡姆剃刀与没有免费午餐定理
脱离具体应用场景空谈学习算法的优劣毫无意义,这就是机器学习视角下的“天下没有免费午餐”定理”。本文详细总结机器学习领域的若干重要指导思想,为机器学习领域的探索建立理论指导原创 2022-07-25 08:00:23 · 1847 阅读 · 61 评论 -
机器学习强基计划0-5:为什么学习的本质是泛化能力?
不管是人的学习还是机器的学习,其最高境界是透过现象看本质,把握规律。学习的本质是在总结规律,而不是复制数据,这就是泛化思想的重要所在,本文重点讨论泛化思想原创 2022-07-27 08:10:06 · 1822 阅读 · 36 评论 -
机器学习强基计划0-6:盘点最常见的7种数据预处理方法和原理
盘点七大机器学习预处理方法和原理,包含数据规范化、类别平衡化、连续值离散化、缺失值处理、哑言编码、正则化、数据降维等原创 2021-11-23 09:19:08 · 3552 阅读 · 8 评论 -
机器学习强基计划1-1:图文详解感知机算法原理+Python实现
感知机是最简单的二分类线性模型,也是神经网络的起源算法。本文图文详解感知机算法原理+手推公式,附Python代码实战加深理解原创 2022-08-03 07:35:36 · 2226 阅读 · 49 评论 -
机器学习强基计划1-2:图文详解线性回归与局部加权线性回归+房价预测实例
线性回归是机器学习线性模型中的一种,本文图文详解+一步步推导线性模型的算法原理和数学原理,并用python实现回归模型原创 2022-08-08 07:00:00 · 2842 阅读 · 61 评论 -
机器学习强基计划1-3:图文详解Logistic回归原理(两种优化)+Python实现
Logistic回归本质上是在线性回归基础上,将预测值映射到概率区间内的分类学习方法。本文图文详解Logistic回归算法原理+手推公式,附Python代码实战加深理解原创 2022-08-09 22:11:44 · 2213 阅读 · 43 评论 -
机器学习强基计划1-4:从协方差的角度详解线性判别分析原理+Python实现
线性判别分析是一种将样本投影到低维空间进行分类的方法,本文从协方差的物理意义出发探索LDA算法的物理意义和算法原理,并给出Python实现原创 2022-08-15 06:00:00 · 2738 阅读 · 58 评论 -
机器学习强基计划2-1:一文总结熵——交叉熵、相对熵、互信息(附例题分析)
本文从宇宙演化的终极定律熵增定律出发,讲解什么是熵?熵与机器学习的关系——最大熵原理,并引出相对熵、交叉熵、条件熵、互信息等常见概念原创 2022-08-29 06:00:00 · 1946 阅读 · 36 评论 -
机器学习强基计划2-2:一文详解ID3、C4.5、CART决策树算法+ Python实现
决策树模拟人类在面临决策问题时的系列判断处理机制,基于树结构对属性分而治之学习。本文从相亲问题出发,通俗理解决策树,并详解ID3、C4.5、CART三种决策树模型,同时给出Python实现原创 2021-11-09 10:28:32 · 3070 阅读 · 9 评论 -
机器学习强基计划2-3:图文详解决策树预剪枝、后剪枝原理+Python实现
剪枝是一种可以提高算法时间和空间效率的技巧,经过剪枝的算法在执行效率上远超一般未经剪枝的算法。本文讨论决策树的预剪枝和后剪枝算法,并给出python实现加深理解原创 2022-08-18 06:00:00 · 1981 阅读 · 23 评论 -
机器学习强基计划3-1:图文详解超平面、函数间隔、几何间隔
在线性判别分析、支持向量机、主成分分析等模型中都接触到超平面的概念,本文图解机器学习中的超平面,以及由其引申出的投影、几何间隔、函数间隔等概念,为后续的模型学习打下基础原创 2022-08-26 06:00:00 · 6668 阅读 · 14 评论 -
机器学习强基计划3-2:详细推导支持向量机SVM原理+Python实现
支持向量机SVM是基于训练集在样本空间或其映射空间中寻找一个最鲁棒的划分超平面将不同类别样本划分开的分类方法。本文介绍SVM的基本原理与Python实现原创 2022-09-07 05:30:00 · 1604 阅读 · 39 评论 -
机器学习强基计划3-3:详细推导序列最小优化SMO算法+Python实现
SVM对偶问题的求解是二次规划问题,造成很大的训练开销。序列最小优化SMO算法是结合SVM算法实际提出的高效优化方法,本文详细推导SMO算法原理并采用Python实现原创 2022-09-02 11:57:33 · 1772 阅读 · 10 评论 -
机器学习强基计划3-4:详解核方法——以核支持向量机KSVM为例
核方法是一类把低维空间的非线性可分问题,转化为高维空间的线性可分问题的思想,本文以核支持向量机KSVM为例介绍核方法的原理并总结常用核函数原创 2022-09-12 06:00:00 · 1909 阅读 · 30 评论 -
机器学习强基计划4-1:你真的分得清频率、概率、几率和似然吗?
国内没有很好的文章辨析这些概念的区别,本文详细讨论频率、概率、几率与似然四者的区别原创 2021-11-05 09:29:07 · 2544 阅读 · 10 评论 -
机器学习强基计划4-2:通俗理解极大似然估计和极大后验估计+实例分析
极大似然法是困扰工科学生的一个重要方法,本文从机器学习背景出发,用一个例子理解基于频率学派的极大似然估计,并自然地引申出基于贝叶斯学派的极大后验估计原创 2022-09-19 06:00:00 · 2184 阅读 · 46 评论 -
机器学习强基计划4-3:详解朴素贝叶斯分类原理(附例题+Python实现)
全网最详细串讲贝叶斯模型的各个概念——从贝叶斯定理到贝叶斯风险,从一个实例出发讲解朴素贝叶斯的应用以及为什么“朴素”,最后根据算法原理提供了模型Python实现原创 2022-09-26 06:00:00 · 2834 阅读 · 50 评论 -
机器学习强基计划4-4:详解半朴素贝叶斯分类AODE原理(附Python实现)
朴素贝叶斯中的属性独立性假设在实际上很难成立,因此引入半朴素贝叶斯分类器,其核心思想是:适当考虑部分属性的相互依赖。本文介绍典型的半朴素贝叶斯分类AODE原理及Python实现原创 2022-10-04 09:57:01 · 4755 阅读 · 56 评论 -
机器学习强基计划4-5:详解半朴素贝叶斯分类TAN原理(附Python实现)
TAN算法通过条件互信息分析属性内部结构,保留了强依赖属性间的联系,本文解析了TAN算法内部的几个技术点,并给出了Python实现与可视化原创 2022-10-13 09:49:21 · 2249 阅读 · 30 评论 -
机器学习强基计划5-1:概率图开篇,机器学习中的图论总结(附思维导图)
概率图是统一表示、推断、学习的灵活框架,在机器人、计算机视觉、推荐系统等领域应用广泛,本节介绍什么是概率图以及机器学习中的图论基础,附思维导图和python实验代码原创 2022-10-17 07:00:00 · 2581 阅读 · 34 评论 -
机器学习强基计划5-2:用一个例子通俗理解贝叶斯网络(附例题)
本文从一个案例出发,详细介绍因果推断、证据推动,并深入浅出地引出贝叶斯网络的概念,并给出实例进行综合分析,加深对贝叶斯网络的理解原创 2021-04-02 17:56:55 · 19965 阅读 · 13 评论 -
机器学习强基计划5-3:图文详解因子分解与独立图I-Map(附例题分析+Python实验)
本文从代数上的因式分解出发,串讲概率图的因子分解、吉布斯分布、独立图、完美图、独立性等价等关键概念,并给出例题分析和Python实验代码原创 2022-10-31 06:00:00 · 1826 阅读 · 24 评论 -
机器学习强基计划5-4:图文详解影响流动与有向分离(D-分离)(附Python实现)
本文深入解析概率影响是如何在贝叶斯网络中流动传播的,并介绍获取贝叶斯网络中各个随机变量间独立性关系的有向分离(D-分离)算法,最后基于Python实现该算法原创 2022-11-07 06:00:00 · 2718 阅读 · 47 评论 -
机器学习强基计划5-5:用一个例子通俗理解变量消除法VE原理(附Python实验)
变量消除法(VE)属于精确推断算法,是运行在概率图上的推理模型,本文从一个计算问题出发介绍引入变量消除法后的优势,并结合实例,用Python验证VE算法和理论计算相吻合原创 2022-11-14 06:00:00 · 1293 阅读 · 23 评论 -
机器学习强基计划6-1:图文详细总结马尔科夫链及其性质(附例题分析)
马尔科夫链是理工科同学经常碰到的建模方法之一,也是机器学习的入门算法,本文图文串讲马尔科夫链及其性质,并通过例题解析加深理解原创 2022-12-29 08:16:49 · 2136 阅读 · 23 评论 -
机器学习强基计划6-2:详细推导马尔科夫随机场(MRF)及其应用(附例题)
有了贝叶斯网络为什么还要引入马尔科夫随机场呢?本文从这个问题出发介绍无向概率图、马尔科夫网、马尔科夫独立性等核心概念,并附上例题解析原创 2023-01-03 08:00:00 · 1732 阅读 · 12 评论 -
机器学习强基计划7-1:无监督学习常用性能指标与距离度量总结
本文系统总结了无监督学习中常用的性能指标与距离度量函数,梳理机器学习中的十几种常用概念原创 2023-07-24 09:17:25 · 1771 阅读 · 27 评论 -
机器学习强基计划7-2:图文详解K-均值聚类(K-means)算法(附Python实现)
聚类的基本思路是通过对无标记训练样本的学习来揭示数据内在的聚合性质与规律。本文介绍K均值聚类(K-means)的核心原理、算法流程,并附上Python实现与可视化加深理解原创 2022-11-21 07:00:00 · 4347 阅读 · 27 评论 -
机器学习强基计划7-3:详细推导学习向量量化LVQ算法(附Python实现)
一般聚类算法属于无监督学习,而学习向量量化LVQ算法却需要标记信息,属于有监督学习,本文详细推导LVQ算法原理,并给出Python底层实现原创 2022-12-14 07:30:00 · 2180 阅读 · 27 评论 -
机器学习强基计划7-4:详细推导高斯混合聚类(GMM)原理(附Python实现)
高斯分布是一个在理、工、文科等多个领域都非常重要的概率分布,本文介绍基于混合高斯分布的混合高斯聚类GMM算法,给出详细的公式推导,并提供Python算法复现原创 2022-12-05 07:00:00 · 2676 阅读 · 36 评论 -
机器学习强基计划7-5:图文详解密度聚类DBSCAN算法(附Python实现)
密度聚类的核心是通过考察样本分布的紧密程度和可连接性,基于可连接样本不断扩展聚类簇完成聚类过程。本文详解密度聚类的经典算法DBSCAN的原理和算法流程,并提供Python实现原创 2022-11-28 07:00:00 · 3831 阅读 · 20 评论 -
机器学习强基计划7-6:图文详解层次聚类AGNES算法(附Python实现)
AGNES算法是一种采用自底向上聚合策略的层次聚类算法,本文图文详解AGNES算法原理,并给出Python实现原创 2022-12-19 07:30:00 · 2220 阅读 · 31 评论 -
机器学习强基计划8-1:图解主成分分析PCA算法(附Python实现)
本文从为什么需要降维开始,分析主成分分析PCA算法原理,PCA与SVD分解的联系,并提供Python实现加深理解原创 2023-02-14 08:30:00 · 6679 阅读 · 35 评论 -
机器学习强基计划8-2:详细推导多维缩放MDS算法(附Python实现)
多维缩放算法MDS是经典的线性降维技术,其限制样本经过降维映射得到的低维空间中的欧式距离,等价于原始空间。本文详细推导MDS算法,并给出Python实现加深理解原创 2023-03-29 08:59:00 · 2082 阅读 · 20 评论 -
机器学习强基计划8-3:详细推导核化主成分分析KPCA算法(附Python实现)
核主成分分析KPCA核心原理是将样本先投影到高维特征空间,从而通过传统PCA实现降维,同时不破坏本真结构。本文详细推导KPCA算法,并给出Python实现加深理解原创 2023-04-06 08:41:53 · 3864 阅读 · 35 评论 -
机器学习强基计划8-4:流形学习等度量映射Isomap算法(附Python实现)
流形学习是近年来机器学习领域的一个重要研究方向。本文介绍流形学习中的经典算法等度量映射Isomap,给出图解和python代码加深理解原创 2023-04-26 09:40:01 · 2275 阅读 · 28 评论 -
机器学习强基计划8-5:图解局部线性嵌入LLE算法(附Python实现)
局部线性嵌入(Locally Linear Embedding, LLE)限制样本在降维后的低维空间中的k近邻局部线性关系,等价于原始空间。本文详解LLE算法原理并给出Python实现原创 2023-05-04 08:52:38 · 2355 阅读 · 43 评论